

Lecture 8

Consensus: design of graph weights, applications and generalizations
Textbook §5.4, §1.5.1, §11.1, §11.2, §11.4

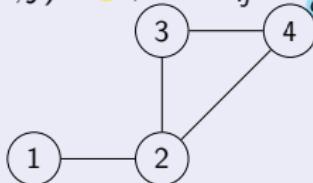
Giancarlo Ferrari Trecate¹

¹Dependable Control and Decision Group
École Polytechnique Fédérale de Lausanne (EPFL), Switzerland
giancarlo.ferraritrecate@epfl.ch

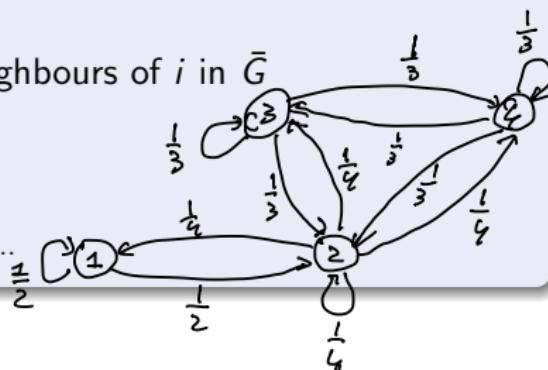
Design of graph weights... to guarantee consensus

The equal-neighbour model

- Given $\bar{G} = (V, \bar{E})$ undirected and connected, build the corresponding digraph $G = (V, E)$ with all self-loops
- if $(i, j) \in \bar{E}$, set $w_{ij} = \frac{1}{\bar{d}(i)+1}$ $\bar{d}(i) = \#$ neighbours of i in \bar{G}



Compute $G \Rightarrow \dots$



Definition. The degree matrix of \bar{G} is

$$\bar{D} = \begin{bmatrix} \bar{d}(1) & & & \\ & \ddots & & \\ & & \bar{d}(n) & \end{bmatrix} \xrightarrow{\text{example}} \bar{D} = \begin{bmatrix} 2 & & & \\ & 3 & & \\ & & 0 & \\ & & & 2 \end{bmatrix}$$

Proposition

Let \bar{A} be binary adjacency matrix of \bar{G} and A be the weighted adjacency matrix of G . Then

$$A = (\bar{D} + I)^{-1} (\bar{A} + I) \quad (1)$$

For the example

$$\bar{A} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix} \rightarrow A = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & 0 & 0 \\ \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ 0 & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ 0 & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{bmatrix}$$

Proposition

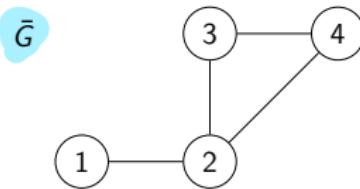
The matrix A in (1) is

- row stochastic
- primitive $\Leftrightarrow \bar{G}$ is connected
- doubly stochastic if \bar{G} is balanced (that is if the degree of each node is identical)

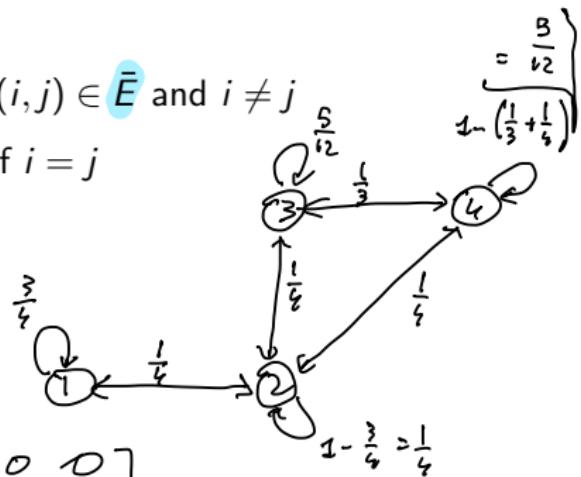
The Metropolis-Hastings model

- Given $\bar{G} = (V, \bar{E})$ undirected, build the corresponding digraph $G = (V, E)$ with all self-loops
- If $(i, j) \in E$ set

$$w_{ij} = \begin{cases} \frac{1}{1 + \max(\bar{d}(i), \bar{d}(j))} & \text{if } (i, j) \in \bar{E} \text{ and } i \neq j \\ 1 - \sum_{(i, h) \in \bar{E}} w_{ih} & \text{if } i = j \end{cases}$$



Compute $G \Rightarrow \dots$



$$\bar{D} = \begin{bmatrix} 1 & & & \\ & 3 & & \\ & & 2 & \\ & & & 2 \end{bmatrix}$$

$$A = \begin{bmatrix} \frac{3}{4} & \frac{1}{4} & 0 & 0 \\ \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ 0 & \frac{1}{4} & \frac{5}{12} & \frac{1}{3} \\ 0 & \frac{1}{4} & \frac{1}{3} & \frac{5}{12} \end{bmatrix}$$

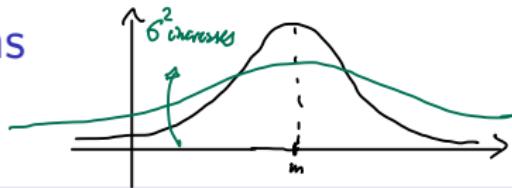
in [11]

Proposition

Let A be the weighted adjacency matrix of G . Then,

- A is symmetric and doubly stochastic
- A is primitive $\Leftrightarrow \bar{G}$ is connected

Applications of consensus algorithms



1. Parameter estimation: sensor networks with noisy measurements

Sensor i measures $y_i = \vartheta + v_i$ $v_i \sim \mathcal{N}(0, \sigma_i^2)$ $i = 1, \dots, n$ where

- $\mathcal{N}(m, \sigma^2)$ is the Gaussian density with mean m and variance σ^2
- $\vartheta \in \mathbb{R}$
- v_i are independent
 - ▶ $\frac{1}{\sigma_i} \simeq$ sensor accuracy

Best estimate: BLUE (Best Linear Unbiased Estimator)

$$\hat{\theta} = \sum_{i=1}^n \alpha_i y_i \quad \alpha_i = \frac{\sigma_i^{-2}}{\sum_{i=1}^n \sigma_i^{-2}}$$

“Unbiased”: $\mathbb{E}[\hat{\theta}] = \vartheta$. True? yes $\mathbb{E}[\hat{\theta}] = \sum_{i=1}^n \alpha_i \mathbb{E}[y_i] = \left(\sum_{i=1}^n \alpha_i \right) \vartheta = 1$

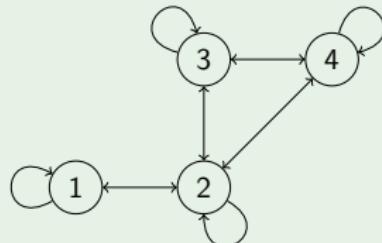
How to compute BLUE in a distributed way?

- Write $\hat{\vartheta}$ as the ratio of two averages

$$\hat{\vartheta} = \frac{\frac{1}{n} \sum_{i=1}^n \sigma_i^{-2} y_i}{\frac{1}{n} \sum_{i=1}^n \sigma_i^{-2}}$$

- Run two average consensus algorithms (one for the numerator, one for the denominator) at each node in a graph G modeling the network connecting sensors

Example



- Assume Metropolis-Hastings weights
- $x_i(\infty) = \sigma_i^{-2} y_i$ $\hat{x}_i(\infty) = \sigma_i^{-2}$
- Iterations $x^t = Ax$, $\hat{x}^t = A\hat{x}$
- At each node i compute

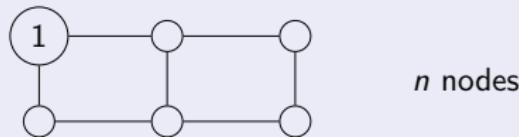
$$\hat{\theta}_i = \frac{\hat{x}_i(\infty)}{x_i(\infty)}$$

Applications of consensus algorithms

2. Node counting in a network

Problem

Make each node aware of the number of nodes in a network through distributed computations



Consensus algorithm

- Set $x_1(0) = 1$ and $x_i(0) = 0 \quad i > 1$
- Run average consensus
- $x_i(\infty) = \frac{1}{n} \quad \forall i \in V \quad (G = (V, E) \text{ is the network})$
- retrieve, at each node, $n = \frac{1}{x_i(\infty)}$

Applications of consensus algorithms

3. Consensus on vector-valued and matrix-valued quantities

Consider the system

$$x_i^+ = \sum_{j \in \mathcal{N}^{\text{out}}(i)} A_{ij} x_j \quad i = 1, \dots, n$$

$x_3 = \begin{bmatrix} x_1' \\ x_2' \\ x_3' \end{bmatrix} \rightarrow \begin{bmatrix} x_1' \\ x_2' \\ x_3' \end{bmatrix}^+ = \begin{bmatrix} \sum_{j \in \mathcal{N}^{\text{out}}(1)} A_{1j} x_j' \\ \sum_{j \in \mathcal{N}^{\text{out}}(2)} A_{2j} x_j' \\ \sum_{j \in \mathcal{N}^{\text{out}}(3)} A_{3j} x_j' \end{bmatrix}$

where $x_i \in \mathbb{R}^m$ or $x_i \in \mathbb{R}^{m \times p}$ and $A_{ij} \geq 0$ are scalars.

The same results on consensus, seen for $x_i \in \mathbb{R}$, hold!

For instance, if A is primitive and stochastic,

$$\exists \bar{x}: x_i \rightarrow \bar{x} \text{ as } k \rightarrow +\infty$$

If, moreover, A is doubly stochastic

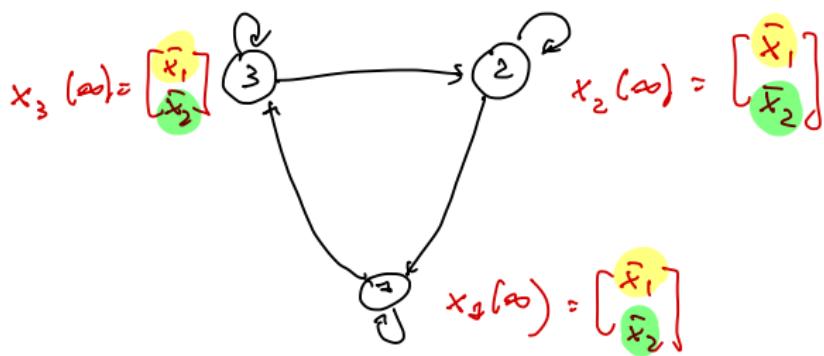
$$x_i \rightarrow \text{average } (x_i(0), i = 1, \dots, n) \text{ as } k \rightarrow \infty$$

Remark

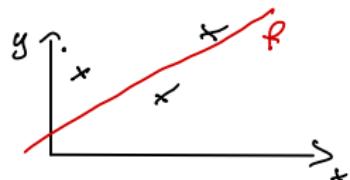
Consensus for $x_i \in \mathbb{R}^2$ means that $\exists \bar{x} = \begin{bmatrix} \bar{x}_1 \\ \bar{x}_2 \end{bmatrix}$ such that

$$\begin{bmatrix} x_{i,1}(k) \\ x_{i,2}(k) \end{bmatrix} \rightarrow \begin{bmatrix} \bar{x}_1 \\ \bar{x}_2 \end{bmatrix} \text{ as } k \rightarrow +\infty$$

But \bar{x}_1 can be different from \bar{x}_2 (not to be confused with $x \rightarrow \alpha \mathbb{1}_n$ as $k \rightarrow +\infty$)



Applications of consensus algorithms



4. Distributed computation of Least-Squares (LS) regression

LS problem: estimate a function $y = f(x)$ $f : \mathbb{R}^{n_x} \rightarrow \mathbb{R}$ from a dataset $D = \{(x_j, y_j) \mid j = 1, \dots, n\}$

Review: LS estimation

- Parametrize the estimate as $f_\vartheta(x) = \sum_{i=1}^M \vartheta_i g_i(x)$
- $g_i(\cdot)$: given basis functions (e.g. polynomials)
- $\vartheta_i \in \mathbb{R}$: parameters

$\hookrightarrow \vartheta = [\vartheta_1, \dots, \vartheta_M]^T$

- Define $\hat{\vartheta}_{\text{LS}} = \underset{\vartheta}{\operatorname{argmin}} \sum_{i=1}^n (y_i - f_\vartheta(x_i))^2$

e.g. $\vartheta_1 x + \vartheta_2$
 \downarrow
 $g_1(x)$ $g_2(x) = 1$

Explicit formula for $\hat{\vartheta}_{LS}$

Set

$$g_j = \begin{bmatrix} g_1(x_j) \\ \vdots \\ g_M(x_j) \end{bmatrix} \in \mathbb{R}^M \quad j = 1, \dots, n$$

$$G = \begin{bmatrix} g_1^T \\ \vdots \\ g_n^T \end{bmatrix} \in \mathbb{R}^{n \times M} \quad y = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}$$

Assume $(G^T G)^{-1}$ exists, then

$$\hat{\vartheta}_{LS} = (G^T G)^{-1} G^T y = \left(\sum_{j=1}^n g_j g_j^T \right)^{-1} \left(\sum_{i=1}^n g_j y_j \right) \quad (*)$$

Goal

each node j of a sensor network measures a single data point (x_j, y_j) and knows the functions $g_1(\cdot), \dots, g_M(\cdot)$. Make each node compute $\hat{\vartheta}_{LS}$ with a distributed algorithm

Solution

write $(*)$ as

$$\hat{\vartheta}_{LS} = \left(\frac{1}{n} \sum_{j=1}^n g_j g_j^T \right)^{-1} \left(\frac{1}{n} \sum_{j=1}^n g_j y_j \right) \quad (**)$$

- $(**)$ involves two averages! Run two average-consensus algorithms with initial conditions

$$x_i^{gg}(0) = g_i g_i^T \in \mathbb{R}^{M \times M}$$

$$x_i^{gy}(0) = g_i y_i \in \mathbb{R}^M$$

- Retreive $\hat{\vartheta}_{LS}$ as $(x_i^{gg}(\infty))^{-1} x_i^{gy}(\infty)$ in each node

 zhu

Time-varying consensus algorithms

Theory and experimental evidence suggest that consensus algorithms are robust to

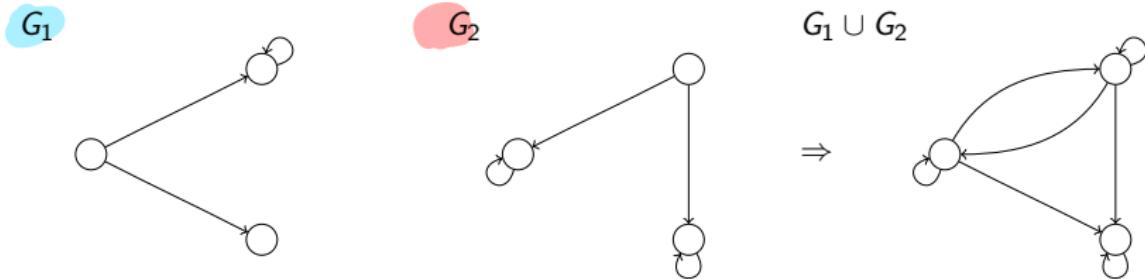
- \heartsuit changes in the graph topology
- \clubsuit lossy communication
- \clubsuit transmission delays
- \clubsuit quantization

Let's discuss (a) and (b) \rightarrow both induce a time-varying communication graph

Time-varying consensus algorithms

Definition *(unweighted)*

The union of digraphs $G_1 = (V, E_1)$ and $G_2 = (V, E_2)$ is the digraph $G = G_1 \cup G_2 = (V, E)$ where $E = E_1 \cup E_2$

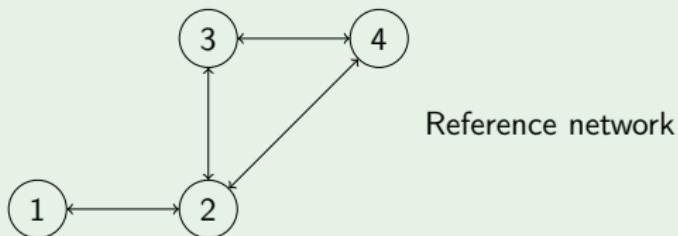


Definition

\mathcal{G}_{SL} is the set of digraphs including all self-loops

- $G \in \mathcal{G}_{SL}$ is a mild assumption in consensus (each node usually knows its own internal state)

Example (Round Robin communication protocol)



- in each communication slot, just one node v transmits to $\mathcal{N}^{\text{out}}(v)$
 \hookrightarrow each $j \in \mathcal{N}^{\text{out}}(v)$ computes

$$x_j^+ = \frac{1}{2}(x_v + x_j)$$

$$\begin{matrix} 3 \\ 4 \end{matrix} \xrightarrow{1} \quad \begin{matrix} 1 \\ 2 \end{matrix} \xrightarrow{1} \quad \square$$

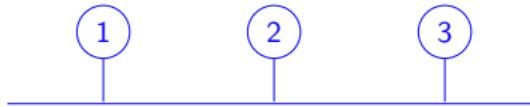
\hookrightarrow all other nodes compute

$$x_j^+ = x_j$$

Time $v=1$

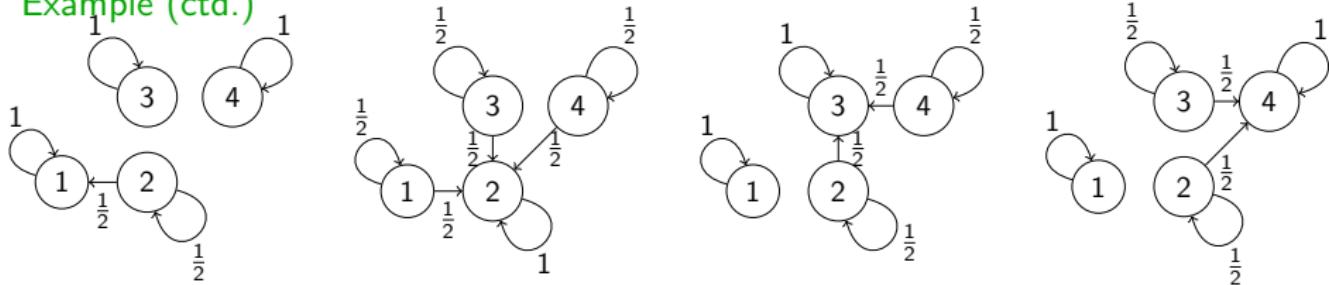
$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}^+ = \begin{bmatrix} 1 & 0 & 0 & 0 \\ \frac{1}{2} & \frac{1}{2} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$$

- If the communication network is a bus, the communication protocol guarantees absence of collisions



- slots are associated to nodes in a round-robin fashion: node v transmits only at times $v, n+v, 2n+v, \dots$ $n = \#$ of nodes

Example (ctd.)



Times 1, 5, 9, ...

Times 2, 6, 10, ...

Times 3, 7, 11, ...

Times 4, 8, 12, ...

Let A_i be the adjacency matrix at time i . We have

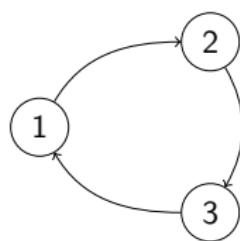
$$x(n) = A_{n-1} \cdot A_{n-2} \cdots A_0 x(0)$$

Questions: consensus? Average consensus?

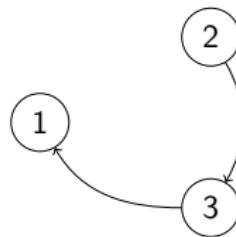
$$\begin{aligned} x(k+1) &= A_k x(k) \\ x(1) &= A_0 x(0) \\ x(2) &= A_1 A_0 x(0) \end{aligned}$$

Example of changes in the graph topology

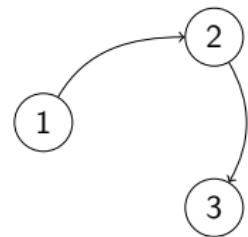
Sporadic packet drops



$k = 0$ (no drops)



$k = 1$ drop of the packet
 $2 \rightarrow 1$



$k = 2$ drop of the packet
 $1 \rightarrow 3$

Questions: consensus? Average consensus?

Theorem (time-varying consensus)

Let $A(k)$, $k \in \mathbb{N}$ be row-stochastic matrices with associated digraphs $G(k)$.

Assume that

- a) $G(k) \in \mathcal{G}_{SL}$
- b) There is $\epsilon > 0$ such that, if in $G(k)$ the weight $a_{ij}(k)$ is strictly positive, then $a_{ij}(k) > \epsilon$ ($a_{ii}(k)$ is included)
- c) There is a duration $\delta \in \mathbb{N}$ such that, $\forall k \in \mathbb{N}$, the digraphs

$$\mathcal{G}(k) = G(k) \cup \dots \cup G(k + \delta - 1)$$

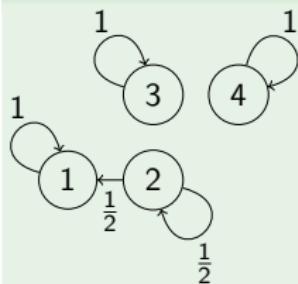
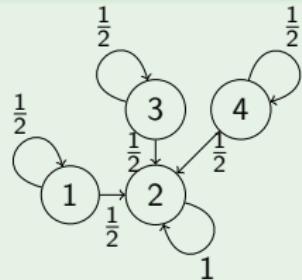
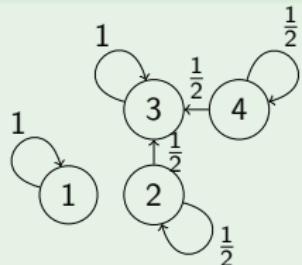
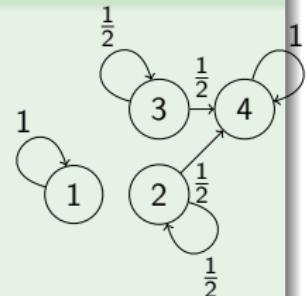
contains a globally reachable node.
Then

- i) $\exists w \succeq 0$, $w^T \mathbb{1}_n = 1$ such that
 $\lim_{k \rightarrow +\infty} (A(k)A(k-1)\dots A(0)) = \mathbb{1}_n w^T$
- ii) the solution to $x(k+1) = A(k)x(k)$ converges exponentially fast to $(w^T x(0)) \mathbb{1}_n$
- iii) if, in addition, each $A(k)$ is doubly stochastic, then $w = \frac{1}{n} \mathbb{1}_n$ and average consensus is achieved

Remarks

- Assumption (b) prevents weights from converging to zero
- Assumption (c) guarantees that δ does not depend on $k \rightarrow$ **uniform connectivity requirement**
- In (iii), if $A(k), \dots, A(k + \delta - 1)$ are doubly stochastic, then their product is double stochastic (prove it at home!)
- In (iii) we are not assuming primitivity of some matrix A
- The convergence can be slow for large δ

Example - Round Robin



Times 1, 5, 9, ...

Times 2, 6, 10, ...

Times 3, 7, 11, ...

Times 4, 8, 12, ...

$$\Rightarrow \xi = \frac{1}{3}$$

- Assumptions (a) and (b) are verified
- Assumption (c) is verified by construction

However, matrices $A(k)$ are not double stochastic \rightarrow no guarantee of average consensus

Example - packet drops

Point (c) \Rightarrow no node is isolated forever.