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Timetable and Course Schedule (tentative)

Part 1: Challenges (Week 1-6) - mostly 1 plant, 1 controller setting

Review of LTI systems

Review of Linear Matrix
Inequalities (LMIs)

Control networks and NCS

Impact of delays

Impact of packet drops
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Part 2: Opportunities (Week 7-14) - multiple systems

Coordination: motivating
examples

Elements of graph and
matrix theory

Discrete-time consensus

Continuous-time consensus
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Literature

Opportunities in NCSs

Francesco Bullo, Lecture notes on network systems, 2017. Available online at:
http://motion.me.ucsb.edu/book-lns/

From now on, this is called ”THE textbook”

F. Garin and L. Schenato, “A Survey on Distributed Estimation and Control
Applications Using Linear Consensus Algorithms,” in Networked Control
Systems, Springer London, pp.75-107, 2010.
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Opportunities: coordination among agents

Drone show at the 2020 Olympic
games

Swarm of mobile robots

Wishes

Partial communication (limited transmission power)

Distributed control

Self-organizing for performing tasks
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Coordination in nature

Social behavior: creatures cluster in large moving formations

School of fish Swarm of flying birds

Partial communication

No centralized control

Global emergent behavior
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Outline

Coordination: motivating problems in engineering and beyond
(Textbook, 1.1-1.3)

Modeling communication: graph theory (Textbook, Ch. 3)
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Social influence networks - De Groot model

n individuals, each with an estimate pi (0) ∈ R of a common
parameter

individuals exchange information (communication network !)

each individual i talks to all others and revises his estimate as

p+i =
n∑︁

j=1

aijpj

aij ≥ 0 are influence weights∑︀n
j=1 aij = 1 ( local averaging behavior)
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Collective model

Set p =
[︀
p1 . . . pn

]︀T
p+ = Ap, A =

⎡⎢⎣a11 · · · a1n
...

. . .
...

an1 · · · ann

⎤⎥⎦
DT LTI system

A is row-stochastic, which means
▶ non-negative entries
▶ elements of each row sum up to 1

Problem

Will the team achieve consensus, i.e.

∃p̄ ∈ R : pi (k) → p̄ as k → +∞, ∀i = 1, . . . , n ?
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Simulations - De Groot model

p+ = Ap, A =

⎡⎢⎢⎣
0 1 0 0 0

1/4 0 1/4 1/4 1/4
0 1/2 0 1/2 0
0 1/3 1/3 0 1/3
0 1/2 1/2 0 0

⎤⎥⎥⎦
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Problems
Properties of the weights aij for achieving consensus ?

Can we predict the consensus value ?
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Averaging in wireless sensor networks

gateway node

sensor node

n spatially distributed devices, each measuring the same
environmental variable (temperature, light,...)

devices exchange information over a communication network

the operator wants to receive a single average measurement

Distributed algorithm

Sensor i computes

x+i = average(xi , xj | j ∼ i)

Example: x+1 = x1+x2
2 , x+2 = x1+x2+x3+x4

4

3

1 2

4

j ∼ i
def
= j is a neighbor of

i
def
= the edge (i , j) exists
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Collective model for the graph in the figure

Set x =
[︀
x1 . . . xn

]︀T
x+ = Ax

A =

⎡⎢⎢⎢⎢⎣
1
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2 0 0
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3

⎤⎥⎥⎥⎥⎦
A is again row-stochastic

3

1 2

4

j ∼ i
def
= j is a neighbor of

i
def
= the edge (i , j) exists

Problem
Will the sensors achieve average consensus, i.e.

xi (k) → average(xi (0), i = 1, . . . , n) as k → +∞,∀i = 1, . . . , n ?

Remark: communication among sensors is just partial (e.g. 1 not connected to 4)
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Alignment in teams of moving agents

Set of n moving agents

Dynamics of agent i :

v+i = vi + ui vi (0) = ṽi

Velocity : vi (k) ∈ R2

Control input : ui (k) ∈ R2

!!

!!

!!!!

Communication network topology:
undirected connected graph
G = (V ,E ). Nodes V = {1, ..., n},
edges E ⊂ V 2.

Partial communication network used for computing the control law

ui = average(vi , vj | j ∼ i)− vi
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Collective model

Set v =
[︀
vT
1 . . . vT

n

]︀T
v+ = Av

A composed by 2× 2 blocks

Aij =

{︃
1

(# neighbors to i)+1 I2×2 if j ∼ i

02×2 otherwise

A is row-stochastic

!!

!!

!!!!

Problems

Will the agents converge to a formation (all agent moving with the same
velocity), i.e.

∃v̄ ∈ R2 : vi (k) → v̄ as k → +∞,∀i = 1, . . . , n ?

Is v̄ = average(vi (0),∀i = 1, . . . , n) ?
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Common features to all examples

The communication topology is captured
by a graph G

DT LTI collective dynamics

x+ = Ax

where the structure of A depends on G

!!

!!

!!!!

gateway node

sensor node

Problem
Is it possible to study consensus by analyzing the graph G ?

Next: elements of
graph theory

algebraic graph theory = how to relate graph and matrix properties
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Graph theory
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Basic definitions

Undirected graph

An undirected graph is a pair G = (V ,E ) consisting of a finite set of
vertices (or nodes) V = {1, 2, . . . , n} and a set E ⊂ V × V of unordered
pairs called edges (or arcs)

Example: V = {1, 2, 3}, E = {(1, 2), (1, 3)}

1

2

3

Undirected edges : (1, 2) = (2, 1), (1, 3) = (3, 1)

Important convention

Self-loops (v , v) are NOT allowed in undirected graphs
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Basic definitions

Directed graph

A graph G is directed (or digraph) if all pairs in E are ordered

Example: V = {1, 2, 3}, E = {(1, 1), (1, 2), (1, 3)}

1

2

3

Ordered edges: (1, 2) ̸= (2, 1), (1, 3) ̸= (3, 1)

Remark

Self-loops (v , v) are allowed in directed graphs
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Basic definitions

Weighted graph

If a function w : E → R is specified, the graph/digraph is called weighted

Example: V = {1, 2, 3}, E = {(1, 2), (1, 3)} w(1, 2) = 1 and
w(1, 3) = −1

1

2

3

1

-1

Remarks

Notation overload: wij = w(i , j)

An unweighted graph is assimilated to a weighted graph with wij = 1,
∀(i , j) ∈ E
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Undirected graphs
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Undirected graphs: neighbors of a node

Let G = (V ,E ) be an undirected graph

Nodes u and v are neighbors if (u, v) ∈ E

▶ Set of neighbors of u: 𝒩 (u) = {v ∈ V : (u, v) ∈ E}
▶ Degree of u:

d(u) =
∑︁

j∈𝒩 (u)

wuj

In unweighted graphs d(u) counts the number of neighbors of u

1

2

3
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Undirected graphs: subgraphs

Subgraph

The graph H = (U,F ) is a subgraph of G = (V ,E ) if U ⊆ V ,F ⊆ E and
edges in F connect only nodes in U

Graph G = (V ,E )

1

2

4

3

Graph H = (U ,F )

1

2

4

H = (U,F ) is a subgraph of G because U = {1, 2, 4} ⊆ V ,
F = {(1, 2), (2, 4)} ⊆ E and edges in F connects only nodes in U.

Spanning subgraph

A subgraph is spanning if its node set is V
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Connectivity in undirected graphs

Path
A sequence of arcs e1e2 · · · ek such that

e1 = (v1, v2), e2 = (v2, v3), . . . , ek = (vk , vk+1)

is a path from v1 to vk+1.

Notation: v1v2 · · · vk+1

Path classification

A path is simple if it does not pass through the same vertex twice (with the
exception of the starting node, when it coincides with the end node)

A cycle is a SIMPLE path with vk+1 = v1 and crossing at least 3 distinct
nodes
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Connectivity in undirected graphs

1

4

3

2

The paths 1234 and 12341 are simple

The path 1231 is a cycle

The path 121 is not a cycle. Also 12312341 is not a cycle
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Connectivity in undirected graphs

Connectivity and completeness

A node v2 is connected to v1 if there is a path from v1 to v2
- A graph is connected if all pairs of distinct vertices are connected
- A graph G = (V ,E ) is complete if, for all pairs of distinct vertices, there
is an edge connecting them

Disconnected graph

1

2 3 4

5

Connected graph

1

2 3 4

5

Remark

If a graph is disconnected, then it is composed of multiple connected
subgraphs, called connected components
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Connectivity in undirected graphs

Tree

A tree of the undirected graph G = (V ,E ) is a connected acyclic
subgraph. A tree is spanning if it contains n nodes, where n = |V |.

Graph G

1

2

4

3

5

Tree

1

4

2

3

Spanning tree

1

4

2

3

5
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Connectivity in undirected graphs

Tree theorem

Let T be an undirected graph. The following conditions are equivalent:

T is a tree

T is connected and has n nodes and n − 1 edges

Every pair of nodes of T is connected by a unique simple path

1

4

2

3

5
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Directed graphs
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Digraphs: neighbors of a node

Let G = (V ,E ) be a digraph and (u, v) ∈ E

u is an in-neighbor of v and v is an out-neighbor of u

𝒩 in(u) and 𝒩 out(u) are the sets of in/out neighbors of u

the in-degree and out-degree of u are defined as

d in(u) =
∑︁

j∈𝒩 in(u)

wju dout(u) =
∑︁

j∈𝒩 out(u)

wuj

1

2

3

4
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Digraphs: neighbors of a subset of nodes

Let G = (V ,E ) be a digraph and S ⊆ V . The set of

out-neighbors of S is
𝒩 out(S) = {j ∈ V ∖S : (i , j) ∈ E for some i ∈ S}
in-neighbors of S is 𝒩 in(S) = {i ∈ V ∖S : (i , j) ∈ E for some j ∈ S}

The set V ∖S is the difference of sets V and S , collecting all vertices in V
that are not in S

1

2

3

4

𝒩 out({1, 2, 3}) = {4}
𝒩 in({1, 2, 3}) = {4}
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Directed graphs: subgraphs

Subgraph

The digraph H = (U,F ) is a subgraph of the digraph G = (V ,E ) if
U ⊆ V ,F ⊆ E and edges in F connect only nodes in U

Graph G = (V ,E )

1

2

4

3

Graph H = (U ,F )

1

2

4

H = (U,F ) is a subgraph of G because U = {1, 2, 4} ⊆ V ,
F = {(1, 2), (2, 4)} ⊆ E and edges in F connects only nodes in U.

Spanning subgraph

A subgraph is spanning if its node set is V

Giancarlo Ferrari Trecate Networked Control Systems EPFL 30 / 37



Connectivity in digraphs

Sources and sinks

A source is a node v with no in-neighbors

A sink is a node v with no out-neighbors

Path and cycles

A path v1 . . . vk is defined as for undirected graphs

As for undirected graphs, a path is simple if it does not pass through
the same vertex twice (with the exception of the starting node, when
it coincides with the end node)

A cycle is a SIMPLE path starting and ending in the same node

Remember:
▶ self-loops are (v , v) are allowed in digraphs
▶ (v , v) and (v , u)(u, v) are cycles in digraphs
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Connectivity in digraphs

Remark
Every acyclic digraph has always at least one source and one sink

Example - simple paths and cycles

1

4

3

2

The path 1234 is simple

The paths 1231, 131, and 11 are cycles
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Connectivity in digraphs

Directed tree

A directed tree is an acyclic digraph where there is a node r (called the root) such
that any other node v ∈ V can be reached from r through one and only one path

Weak/strong connectivity

G is strongly connected if for any u, v ∈ V , u ̸= v there is a path from u to
v

G is weakly connected if its undirected version is connected

Weakly connected G

2

3

1 6

4

5

Strongly connected G

2

3

5

1 6

4
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Examples
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Connectivity in digraphs

Global reachable node and directed spanning tree

G has a globally reachable node if there is g ∈ V connected to any other
node v ∈ V (i.e. there is a path from v to g)

G has a directed spanning tree if it contains a directed tree comprising all
nodes in V

G with a globally reachable node (node 2)

2

3

1 6

4

5
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Connectivity in digraphs

Reverse graph

Let G = (V ,E ) be a digraph. Its reverse graph G rev (V ,E rev ) is given by the edge
set E rev = {(i , j) if (j , i) ∈ E}

Remark
G has a globally reachable node, if and only if G rev includes a directed spanning
tree

G with a globally reachable node (node 2)

2

3

1 6

4

5
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Take home messages and open problems

Graph theory allows one to easily model the topology of a control
network

Graphs define connectivity properties

Any algebraic characterization of graph connectivity properties ?

How graph connectivity relates to the achievement of consensus in
the examples ?
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