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Prof. G. Ferrari Trecate

1. A sample DeGroot panel. [Textbook E5.1] A conversation between 5 panelists is modeled
according to the DeGroot model by an averaging system x+ = Ax, where

A =




0.15 0.15 0.1 0.2 0.4
0 0.55 0 0 0.45

0.3 0.05 0.05 0 0.6
0 0.4 0.1 0.5 0
0 0.3 0 0 0.7



.

Assuming that the panel has sufficiently long deliberations, answer the following:

(a) Draw the condensation of the associated digraph.

(b) Do the panelists finally agree on a common decision?

(c) In the event of agreement, does the initial opinion of any panelists get rejected? If so, which
ones?

(d) Assume the panelists’ initial opinions are their self-appraisals (i.e., the self-weights a11, . . . , a55)
and compute the final opinion (Hint: use MatLab for computing relevant eigenvectors).

Solution: The digraph G associated to A is

11

22

55 33

44

• Nodes 2, 5 are globally reachable.

• No path from 5 to 4 ⇒ G is not strongly connected.

(a) The condensation digraph has two nodes: {1, 3, 4} with a directed link to {2, 5}.
(b) The condensation digraph corresponding to A has a globally reachable node induced by {2, 5}.

This subgraph is aperiodic and strongly connected. Therefore, from the theorem seen in the
lectures about consensus in presence of a globally reachable node, the panelists reach to an
agreement (i.e. consensus is achieved).

(c) The final decision depends entirely on nodes 2 and 5. The views of nodes 1, 3, and 4 get
rejected.

(d) Since A is stochastic, from the theorem seen in the lecture,

x(k)→ (wTx(0))15 as k →∞,
where w is the left eigenvectors of A verifying wT

15 = 1. Moreover, we know that wT =
[0 ? 0 0 ?], where ? are the nonzero elements. Using MatLab for computing the right
eigenvector of AT , one obtains wT = [0 0.4 0 0 0.6] and, for the initial opinion x(0) =
[0.15 0.55 0.05 0.5 0.7], the agreed decision (wTx(0))15 = 0.64 · 15.
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2. A stubborn agent. [Textbook E5.5] Pick α ∈]0, 1[, and consider the discrete-time averaging
algorithm

x1(k + 1) = x1(k),

x2(k + 1) = αx1(k) + (1− α)x2(k).

Perform the following tasks:

(a) compute the matrix A representing this algorithm and verify it is row-stochastic,

(b) compute the eigenvalues and eigenvectors of A,

(c) draw the directed graph G representing this algorithm and discuss its connectivity properties,

(d) compute the condensation digraph of G,

(e) compute the final value of this algorithm as a function of the initial values invoking the
theorem on consensus with globally reachable nodes.

Solution: The digraph G associated to A is

(a) We have

A =

[
1 0
α 1− α

]

Clearly, A is non-negative and has row-sums equal to 1.

(b) The eigenvalues are read off the diagonal of A, because A is lower triangular. Therefore, λ1 = 1
and λ2 = 1− α.

From row-stochasticity, we also know that the eigenvector corresponding to λ1 is 12. A direct
computation also shows that [0, 1]T is a right eigenvector for the eigenvalue λ2.

(c) Text
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E5.5 A stubborn agent. Pick ↵ 2 ]0, 1[, and consider the discrete-time averaging algorithm

x1(k + 1) = x1(k),

x2(k + 1) = ↵x1(k) + (1 � ↵)x2(k).

Perform the following tasks:
(i) compute the matrix A representing this algorithm and verify it is row-stochastic,

(ii) compute the eigenvalues and eigenvectors of A,
(iii) draw the directed graph G representing this algorithm and discuss its connectivity properties,
(iv) compute the condensation digraph of G,
(v) compute the �nal value of this algorithm as a function of the initial values in two alternate ways:

(a) invoking Exercise E2.10, and
(b) invoking Theorem 5.1.

Answer:

(i) We have

A =


1 0
↵ 1 � ↵

�

Clearly, A is non-negative and has row-sums equal to 1.
(ii) The eigenvalues are read o� the diagonal of A, because A is lower triangular. Therefore, �1 = 1 and �2 = 1�↵.

From row-stochasticity, we also know that the eigenvector corresponding to �1 is 12. A direct computation
also shows that [0 1] is a right eigenvector for the eigenvalue �2.

(iii)
12

(iv)
(v) (a) Note that x1(k + 1) = x1(k) implies x1(k) = x1(0) for all k. The x2 subsystem satis�es x2(k + 1) =

(1 � ↵)x2(k) + ↵x1(0), which is a discrete-time a�ne system. In the notation of Exercise E2.10, A = ↵
and b = (1 � ↵)x1(0), because ↵ < 1. Hence limk!1 x2(k) = (I1 � A)�1b = x1(0).

(b) Note that G is aperiodic with a globally reachable node. Moreover, we compute the left eigenvector of A
corresponding to eigenvalue �1 to be [1, 0]. Hence, by Theorem 5.1 the �nal consensus value is identical to
the initial condition of the �rst agent.
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(e) Note that G is aperiodic with a globally reachable node. Moreover, we compute the left
eigenvector of A corresponding to eigenvalue λ1 to be [1, 0]. Hence, by the Theorem on
consensus with globally reachable nodes the final consensus value is identical to the initial
condition of the first agent.

3. The equal-neighbor row-stochastic matrix for weighted directed graphs. [Textbook E5.3]
Let G be a weighted digraph with n nodes, weighted adjacency matrix A and weighted out-degree
matrix Dout. Define the equal-neighbor matrix

Aequal-neighbor = (In +Dout)
−1(In +A).

Show that

(a) Aequal-neighbor is row-stochastic;

(b) Aequal-neighbor is primitive if and only if G is strongly connected; and

(c) Aequal-neighbor is doubly-stochastic if G is weight-balanced and the weighted degree is constant
for all nodes (i.e., Dout = Din = dIn for some d ∈ R>0).
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Hint: First, for any v ∈ Rn with non-zero entries, it is easy to see diag(v)−1v = 1n, where diag(v)
is the diagonal matrix with the elements of v on the main diagonal. Note also that, by definition,
Dout + In = diag((A+ In)1n) and Din + In = diag((A+ In)T1n).

Solution: One has

(
(Dout + In)−1(A+ In)

)
1n = diag((A+ In)1n)−1 ((A+ In)1n) = 1n,

which proves statement (a). To prove statement (b), note that, besides self-loops, G and the
weighted digraph associated with Aequal−neighbor have the same edges. Also note that the weighted
digraph associated with Aequal−neighbor is aperiodic by design. Finally, if Dout = Din = dIn for
some d ∈ R>0, then

(
(Dout + In)−1(A+ In)

)T
1n =

1

d+ 1

(
(A+ In)T1n

)

= (Din + I)−1
(
(A+ In)T1n

)

= diag((A+ In)T1n)−1
(
(A+ In)T1n

)
= 1n.

where the last inequality follows from the last part of the hint. This concludes the proof of statement
(c).

4. Reversible primitive row-stochastic matrices. [Textbook E5.4] Let A be a primitive row-
stochastic n× n matrix and w be its left dominant eigenvector (i.e. the left eigenvector associated
with the dominant eigenvalue). The matrix A is reversible if

wiAij = Ajiwj , for all i, j ∈ {1, . . . , n}, (1)

or, equivalently
diag(w)A = AT diag(w).

Prove the following statements:

(a) if A is reversible, then its associated digraph is undirected, that is, if (i, j) is an edge, then so
is (j, i)

(b) if A is reversible, then diag(w)1/2 · A · diag(w)−1/2 is symmetric and, hence, A has n real
eigenvalues and n eigenvectors. Recall that, for w = (w1, . . . , wn) > 0, the following definitions
hold: diag(w)1/2 = diag(

√
w1, ...,

√
wn) and diag(w)−1/2 = diag(1/

√
w1, ..., 1/

√
wn).

(c) If A is an equal-neighbor matrix for an unweighted undirected graph, then A is reversible.
Using MatLab, verify this statement for the equal-neighbor matrix associated to the undirected
graph G = (V,E), V = {1, 2, 3, 4}, E = {(1, 2), (2, 3), (3, 4), (4, 2)}.

Solution:

(a) Since A is primitive, the Perron-Frobenius Theorem implies that its left dominant eigenvector
w is entry-wise positive. But then equation (1) implies that Aij > 0 if and only if Aji > 0.

(b) Define B = diag(w)1/2A(w)−1/2 and note that Bij =
√
wi√
wj
Aij . In turn, from equation (1), we

compute

Bij =

√
wi√
wj

Ajiwj

wi
=

√
wj√
wi
Aji = Bji.

This establishes that B is symmetric so that B has n real eigenvalues and n orthogonal
eigenvectors. Since B and A are similar, and a similarity transformation does not alter the
eigenvalues, A has real eigenvalues as well. Moreover, each eigenvector v of B gives rise to an
eigenvector diag(w)−1/2v for A because

Bv = λv ⇒ Adiag(w)−1/2v = λdiag(w)−1/2v.

(c) For the solution, see MatLab file on moodle.
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