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Outline

Linear Time Invariant (LTI) system in Discrete Time (DT)
I Equilibria
I Stability: definitions and test through eigenvalues
I Stability test through Lyapunov functions

DT Linear Time Varying (LTV) systems
I Definitions of stability
I DT linear switched systems: stability test through Lyapunov functions
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Discrete-time (DT) linear systems

k 2 N : discrete time
LTV models:

x(k + 1) = A(k)x(k) + B(k)u(k)

y(k) = C (k)x(k) + D(k)u(k)

LTI models if A,B ,C and D do not depend on k .
I alternative notation:

F xk+1 = x(k + 1)
F drop k and define x+ = xk+1

x+ = Ax + Bu xk0 = x0

y = Cx + Du

Transition map xk = �(k , k0, x0, u)

For LTV models, the initial time k0 of the experiment is important

Superposition principle, Lagrange formula, free and forced states are
given in the Appendix (very similar to the CT case)

Giancarlo Ferrari Trecate Networked Control Systems EPFL Fall 2017 3 / 23

* (n+ 1) = x (*)k

&



Stability of equilibria of LTI systems

x+ = Ax + Bu x(0) = x0

(x̄ , ū) 2 Rn ⇥ Rm is an equilibrium if

(I � A)x̄ � Bū = 0

(x̄ , ū) = (0, 0) is always an equilibrium.

Definitions

Stability, AS, instability: same definitions in the CT case replacing t
with k

x̄ is (globally) exponentially stable (ES) if there are ↵ > 0, ⇢ 2 [0, 1)
such that

kx(k)� x̄k  ↵⇢kkx(0)� x̄k, 8x(0) 2 Rn,

and the constant � such that ⇢ = e� is the decay rate.

Giancarlo Ferrari Trecate Networked Control Systems EPFL Fall 2017 4 / 23

->
F= Ax +Bi

->
Esto

, 750 : 1x10-elldelx(K) -EH3 Frzo

- ph= eBk



Stability - relevant properties

x+ = Ax + Bu x(0) = x0
For a linear systems, all equilibria have the same stability properties

Focus on the stability of (x̄ , ū) = (0, 0)

The whole system can be termed stable/AS/unstable/ES

Theorem (stability and free states)

The above system is

stable , free states x(k) = �(k , k0, x0, 0) are bounded 8x0 2 Rn

AS , ES , all the free states converge to zero 8x0 2 Rn

Giancarlo Ferrari Trecate Networked Control Systems EPFL Fall 2017 5 / 23

->
=(1) = AE x(z) = Aix-

d
X(k+ 1) = Ax (x)
↓ (d) = F

↓ j
* (k) = A

*
F



Stability test through the eigenvalues of A

Definition

A is Schur if all eigenvalues � 2 Spec(A) verify |�| < 1

Theorem (stability test)

An LTI system is

AS , if A is Schur

unstable if there is � 2 Spec(A) with |�| > 1

stable if all � 2 Spec(A) verify |�|  1 and those verifying |�| = 1 are
simple.

Remark

Similar to the continuous time case, multiple eigenvalues with |�| = 1 can
lead either to stability or instability.
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Lyapunov stability theory

We focus on stability of the origin for the LTI system x+ = Ax

Idea: if an energy-like function of the state decreases to zero, the
origin is stable.

I what is an energy function?
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Lyapunov stability theory

Energy V (x)
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V (x) is a measure of the distance of x from the origin
I If V (x) can only decrease over time, then x̄ = 0 should be stable

Next: make statements more rigorous!
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Review: positive-definite matrices and quadratic functions

Definition

A symmetric matrix M 2 Rn⇥n is

(a) positive definite (pd) if x 6= 0 ) xTMx > 0. Notation: M > 0

(b) positive semidefinite (psd) if xTMx � 0, 8x 2 Rn. Notation: M � 0

(c) negative definite/semidefinite (nd/nsd) if �M is pd/psd. Notation:
M < 0/M  0

Properties of the quadratic function xTMx

A symmetric matrix M has real eigenvalues

If M > 0, defining �min(M) and �max(M) as the minimum and
maximum eigenvalue of M, respectively, one has

�min(M)kxk2  xTMx  �max(M)kxk2
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Energy forward di↵erence

x+ = Ax

Consider a quadratic energy-like function: V (x) = xTPx , where P 2 Rn⇥n

is symmetric and positive definite

Compute �V (x) = V (x(k + 1))� V (x(k))

�V (x) = xTATPAx � xTPx = xT (ATPA� P)x

We are sure that �V (x)  0 if

ATPA� P  0
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Lyapunov theorems

Theorem 1: stability

The LTI system x+ = Ax is stable, if and only if there is P > 0 such that
ATPA� P  0

Theorem 2 (AS/ES)

For the LTI system x+ = Ax , the following statements are equivalent

(a) the system is ES

(b) for an arbitrary symmetric matrix Q > 0, there is a matrix
PT = P > 0 solving the Lyapunov equation

ATPA� P = �Q

(c) there is P = PT > 0 verifying ATPA� P < 0.
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Lyapunov theorems

Terminology

V (x) = xTPx is a candidate Lyapunov function

If V (x) verifies one of the two theorems, it is a Lyapunov function

Remark

ATPA�P = �Q is a system of linear equations in the elements of P ,
for a given Q

ATPA� P  0 is a Linear Matrix inequality (LMI) in the elements of
P - see next lecture!

Giancarlo Ferrari Trecate Networked Control Systems EPFL Fall 2017 12 / 23



Proof that (b) ) (a)

The positive definiteness of Q implies that 9� > 0 verifying
�xTQx  ��kxk2. For instance, one can choose � 2 (0,�min(Q)].
Similarly, P > 0 implies that

�min(P)kxk2  xTPx  �max(P)kxk2 (1)
Step 1: using the forward di↵erence, deduce how much V decreases.
From �V (x) = �xTQx

�V (x)  ��kxk2  ��

�max(P)
xTPx  ��

�max(P)
V (x) (2)

which implies

V (x(k + 1)) 
✓
1� �

�max(P)

◆
V (x(k)) (3)

Since � can be chosen arbitrarily small, select it such that
⇢2 = 1� �

�max (P)
verifies ⇢ 2 [0, 1).
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Proof that (b) ) (a) (ctd.)

Step 2: iterate backwards to relate V (x(k)) to V (x(0)).
From

V (x(k + 1))  ⇢2V (x(k)) (4)

one has V (x(k))  ⇢2kV (x(0))

Step 3: use bounds on V to make states appear.
Using (1) and defining m2 = �max (P)

�min(P)
, one obtains

kx(k)k  m⇢kkx(0)k
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Proof that (a) ) (b)

) For a given Q > 0, if A is Schur (which is guaranteed by ES), it can
be shown that the Lyapunov equation has a solution P = PT given
by

P =
1X

k=0

(AT )kQAk = Q + ATQA+ ...

Show at home that this P fulfills the Lyapunov equation !
Since Q > 0 and (AT )kQAk � 0, k � 1, one has P > 0.
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Example

x+ =


�0.81 �0.09
�0.45 0.63

�
x Spec(A) = {�0.8376, 0.6576}

Set Q = I and solve ATPA� P = �Q (P=dlyap(A,Q))

P =


3.2661 0.7302
0.7302 2.0683

�
Spec(P) = {1.7728, 3.6116}

Energy V (x) Level sets
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Why Lyapunov theory?

Much more flexible then the analysis of Spec(A). Generalizes to

nonlinear systems

LTV systems - see next!

Moreover, Lyapunov theory allows to cast stability tests into optimization
problems (see next lectures on LMIs)
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Stability concepts for LTV systems

x(k + 1) = A(k)x(k) + B(k)u(k) x(k0) = x0

How to define stability? Focus on (x̄ , ū) = (0, 0)

Definition:

The equilibrium (x̄ , ū) = (0, 0) is

(1) stable if for all x0 and k0, x(k) = �(k, k0, x0, 0) is bounded for k � k0

(2) AS if 8x0 and k0, x(k) ! 0 as k ! +1
(3) ES if 9⇢ 2 [0, 1) and ↵ > 0 such that, for all x0 and k0, k�(k, k0, x0, 0)k  ↵⇢k�k0kx0k

kkk̂0k̂0

kx0kkx0k

↵kx0k↵kx0k

kx(k)kkx(k)k
kx̂(k)kkx̂(k)k

Abuse of language: “x(k + 1) = A(k)x(k) is AS”, “A(k) is AS”, etc..

Remarks

↵, ⇢ in (3) do not depend on k0

In (3), the constant � � 0 such that ⇢ = e��
is the decay rate

AS ; ES (di↵erent from LTI system)

Giancarlo Ferrari Trecate Networked Control Systems EPFL Fall 2017 18 / 23



Example: for LTV systems AS ; ES

x(k + 1) = A(k)x(k) A(k) =

✓
k + 1
k + 2

◆
2

x(k0) = x0

Remark: A(k) ! 1 as k ! +1, implying slower and slower convergence rate

Computations:

x(k + 1) =

✓
k0 + 1
k + 2

◆
2

x0 ) AS since x(k) ! 0, 8x0

For studying ES, fix k0 = 0, x0 = 1. Assume that 9↵ > 0, ⇢ 2 [0, 1) such that

✓
k0 + 1
k + 2

◆
2

x0 =

✓
1

k + 2

◆
2

 ↵⇢k , 8k � 0

This implies
1
↵

 (k + 2)2⇢k

which is a contradiction because (k + 2)2⇢k ! 0 as k ! +1
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Discrete-time Linear Switched system

System with a finite set I = {1, · · · ,M} of modes of operation and a
switching signal indicating the active mode at each time instant

xk+1 = A�(k)xk xk 2 Rn �(k) 2 I (5)

�(·) is an exogenous input

For any fixed sequence �(0), �(1), . . ., system (5) is LTV: stability =
stability of the zero solution.

Definition

The switched system (5) is exponentially stable if for any sequence �(k) the
resulting LTV system is ES. Equivalently, for all x0, k0 and {�(k)}+1

k=k0

9⇢ 2 [0, 1) and ↵ > 0 such that k�(k , k0, x0, 0)k  ↵⇢k�k0kx0k

Remark

For stability, it is not su�cient that all matrices Ai , i 2 I are Schur
(examples in the exercise sessions!)
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Discrete-time Linear Switched system

System with a finite set I = {1, · · · ,M} of modes of operation and a
switching signal indicating the active mode at each time instant

xk+1 = A�(k)xk xk 2 Rn �(k) 2 I (5)

Theorem

If there is P 2 Rn⇥n,P = PT > 0 such that

AT
i PAi � P < 0, 8i 2 I,

then (5) is exponentially stable

V (x) = xTPx is a common Lyapunov function for all the modes

The condition is only su�cient and implies all modes of operation are
exponentially stable

How to find P? By solving a Linear Matrix Inequality (LMI)
optimization problem (see next lecture)
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Appendix
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Superposition principle (LTV system)

The same as for CT linear systems

For ↵,� 2 R, let
I xa(k)=�(k , k0, x0,a, ua) and ya(k) the corresponding output
I xb(k)=�(k , k0, x0,b, ub) and yb(k) the corresponding output
I x(k)=�(k , k0,↵x0,a + �x0,a,↵u0 + �u0) and y(k) the corresponding

output

Then, 8k � k0
I x(k) = ↵xa(k) + �xa(k)
I y(k) = ↵ya(k) + �yb(k)
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LTI systems: Lagrange formula

How the transition map looks like for an LTI system?

x(k + 1) = Ax(k) + Bu(k) x(0) = x0

y(k) = Cx(k) + Du(k)

We assume, for simplicity, the experiment starts at time k0 = 0. One has

x(1) = Ax0 + Bu0

x(2) = Ax(1) + Bu(1) = A2x(0) + ABu(0) + Bu(1)

x(3) = Ax(2) + Bu(2) = · · · = A3x(0) + A2Bu(0) + ABu(1) + Bu(2)

x(k) = �(k , 0, x0, u) = A(k � k0)x0| {z }
�(k,0,x0,0)=free state

+
k�1X

i=0

A(k�i�1)Bu(i)

| {z }
�(k,0,0,u)=forced response

y(k) = �(k , 0, x0, u) = CAkx0| {z }
free output

+C
k�1X

i=0

A(k�i�1)Bu(i) + Du(k)

| {z }
forced output

Easy to generalize for k0 6= 0 and for LTV systems - just more complex
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