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Optimization in the loop

Classical control loop:
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The classical controller is replaced by an optimization algorithm:
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The optimization uses predictions based on a model of the plant.
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Optimization-based control: Conceptual
Example

Constraints:
• Stay on road
• Don’t skid
• Limited acceleration

Intuitive approach:
• Look forward and plan path
based on

Road conditions
Upcoming corners
Abilities of car
etc...
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Optimization-based control: Conceptual
Example

minimize (circuit time)
while avoid other cars

stay on road
...

• Solve optimization problem to
compute minimum-time path
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Optimization-based control: Conceptual
Example

minimize (circuit time)
while avoid other cars

stay on road
...

• Solve optimization problem to
compute minimum-time path

• What happens if something
unexpected happens?

We didn’t see a car around
the corner!
Must introduce feedback
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Optimization-based control: Conceptual
Example

minimize (circuit time)
while avoid other cars

stay on road
...

• Solve optimization problem to
compute minimum-time path

• Obtain planned control actions
• Apply first control move
• Repeat the planning procedure
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Receding horizon control

P(s)%

Objectives
 Model
 Constraints


Plant

Optimizer







Measurements 
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Plan
Do


Plan
Do


Plan
Do

Time


Receding horizon strategy introduces feedback.
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Constraints in Control
All physical systems have constraints.

• Physical constraints, e.g. actuator limits
• Performance constraints, e.g. overshoot
• Safety constraints, e.g. temperature/pressure limits

Optimal operating points are often near constraints.

Classical control methods:
• No knowledge of constraints
• Set point sufficiently far from constraints
• Suboptimal plant operation

Predictive control:
• Constraints included in the design
• Set point optimal
• Efficient plant operation

Optimal Operation and Constraints

PSfrag replacements

constraint

set point
time

ou
tp

ut Classical Control
No knowledge of constraints
Set point far from constraints
Suboptimal plant operation

PSfrag replacements

constraint

set point
time

ou
tp

ut Predictive Control
Constraints included in design
Set point closer to optimal
Improved plant operation

4F3 Predictive Control - Lecture 1 – p.3/11
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Reasons to Use Predictive Control

When to use predictive control?

1. Constraints drive performance
2. Strongly nonlinear system dynamics
3. Complex objectives
4. Some future knowledge

System matches any of these conditions: MPC could be the right solution

When not to use predictive control?

1. Whenever something simpler would work!
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MPC: Mathematical formulation

u�(x) := argmin xTNQf xN +

N�1�

i=0

xTi Qxi + uTi Rui

���� x0 = x ���������
�

xi+1 = Axi + Bui ������������

Cxi +Dui � b ��
����

��

R ⇥ 0, Q ⇥ 0 ��������
�����
�	��

Problem is defined by

• Objective that is minimized,
e.g., distance from origin, sum of squared/absolute errors, economic,...

• Internal system model to predict system behavior
e.g., linear, nonlinear, single-/multi-variable, ...

• Constraints that have to be satisfied
e.g., on inputs, outputs, states, linear, quadratic,...
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MPC: Mathematical formulation

Plant


plant state x 

Output y 

u�(x) = {u�0, . . . , u�N�1}

u�(x) := argmin xTNQf xN +

N�1�

i=0

xTi Qxi + uTi Rui

���� x0 = x ���������
�

xi+1 = Axi + Bui ������������

Cxi +Dui � b ��
����

��

R ⇥ 0, Q ⇥ 0 ��������
�����
�	��

At each sample time:

• Measure /estimate current state
• Find the optimal input sequence for the entire planning window N

• Implement only the first control action
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MPC: Applications

Production planning


Nurse rostering


Buildings


Power systems


Train scheduling


Refineries


Traction control


Computer control
 ns


𝜇s


ms


Seconds


Minutes


Hours


Days


Weeks
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Example: Ball on Plate

• Movable plate (0.66m x 0.66m)
• Can be revolved around two axis
[+17◦;−17◦] by two DC motors

• Angle is measured by potentiometers
• Position of the ball is measured by a camera
• Model: Linearized dynamics, 4 states, 1
input per axis

• Input constraints: Voltage of motors
• State constraints: Boundary of the plate,
angle of the plate

[Master thesis R. Waldvogel, ETH, 2011]
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Example: Ball on Plate

Controller comparison:
LQR vs. MPC in the presence of input constraints

[+2.3o ; -2.3o]


sampling   
time: 0.01s

prediction 
horizon: 20


MPC introduces preview by predicting the state over a finite horizon

[Master thesis by R. Waldvogel, ETH, 2011]
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Path Following

MPC Control of a crane along a known path:

crane

[Jan Swevers, KU Leuven]
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Example: Autonomous Quadrocopter flight
Quadrocopters:
• Highly agile due to fast rotational dynamics
• High thrust-to-weight ratio allows for large
translational accelerations

• Motion control by altering rotation rate and/or pitch
of the rotors

• High thrust motors enable high performance control

Control Problem:
• Nonlinear system in 6D (position, attitude)
• Constraints: limited thrust, rates,...
• Task: Hovering, trajectory tracking
• Challenges: Fast unstable dynamics

guaranteed by limiting trajectory jerk and acceleration
such that the actual control inputs do not saturate.

In Section 2, we introduce the dynamic quadrocopter
model used in the trajectory generation. Feasibility con-
straints on trajectories are derived in Section 3. In Sec-
tion 4, the planning problem is presented, simplified, and
solved. Section 5 presents the implicit feedback control law
resulting from running the trajectory generation algorithm
at each controller update. The experimental setup and
results are shown in Section 6. Conclusions are drawn in
Section 7, along with an outlook for future research.

2. DYNAMIC MODEL

The quadrocopter is described by six degrees of freedom:
the translational position (x, y, z) is measured in the
inertial coordinate system O as shown in Figure 1. The
vehicle attitude V is defined by the rotation matrix O

VR.
The rotation matrix is defined such that, when multiplying
a vector v in the vehicle coordinate V system with it, the
same vector, described in the inertial coordinate system
O, is obtained:

Ov = O

VR Vv (1)

2.1 Control Inputs

The control inputs of the quadrotor vehicle are the desired
rotational rates about the vehicle body axes, ωx, ωy, and
ωz, and the mass-normalized collective thrust, a, as shown
in Figure 2.

High-bandwidth controllers on the vehicle track the de-
sired rates using feedback from gyroscopes. The quadro-
copter has very low rotational inertia, and can produce
high torques due to the outward mounting of the pro-
pellers. This results in very high achievable rotational
accelerations ω̇x and ω̇y on the order of 200 rad/s2. The
vehicle has a very fast response time to changes in the
desired rotational rate (experimental results have shown
time constants on the order of 20ms for changes that do
not saturate the motors). It is therefore assumed that we
can directly control the vehicle body rates and ignore rota-
tional acceleration dynamics. Rotational accelerations ω̇z

are created by causing a drag difference between propellers
rotating in opposite directions. Achievable accelerations
are significantly lower at about 19 rad/s2. However, we will

ωx

ωy ωz

a

Fig. 2. The control inputs of the quadrocopter: The rota-
tional rates ωx, ωy, and ωz are tracked by an on-board
controller, using gyroscope feedback.

show that ωz does not greatly influence the dynamics of
the vehicle in this algorithm.

Like the vehicle body rates, it is assumed that the thrust
can be changed instantaneously. Experimental results have
shown that the true thrust dynamics are about as fast
as the rotational dynamics, with propeller spin-up being
noticeably faster than spin-down.

It is further assumed that all control inputs are subject to
saturation. The magnitude of the vehicle body rates are
limited (such limitations can be caused, for example, by
the range of the gyroscopes, or limitations of the body rate
tracking controllers). The collective thrust is limited by a
minimum and a maximum thrust

amin ≤ a ≤ amax, (2)

where amin > 0. This limitation is motivated by typical
quadrotor vehicles having propellers of fixed-pitch type,
and not being able to reverse their direction of rotation in
flight.

2.2 Equations of Motion

The translational acceleration of the vehicle is dictated by
the attitude of the vehicle and the total thrust produced
by the four propellers. The translational acceleration in
the inertial frame is[

ẍ
ÿ
z̈

]
= O

VR

[
0
0
a

]
+

[
0
0

−g

]
. (3)

The change of vehicle attitude is related to the rotational
control inputs through [Hughes, 1986]

O

VṘ = O

VR

[
0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

]
. (4)

3. FEASIBILITY CONDITIONS FOR
TRAJECTORIES

We calculate the control inputs for a given trajectory,
allowing the inspection of the effects of the control input
limitations on the feasibility of trajectories. Feasible tra-
jectories must fulfill the equations of motion (3) and (4)
and the required control inputs must not exceed allowable
values.

3.1 Control Inputs for a Given Trajectory

Let (x(t), y(t), z(t)) denote a candidate vehicle trajectory.
For notational convenience, we omit the time dependency
from here on. Taking the second derivative of the trajec-
tory and combining it with the translational equation of
motion (3), we introduce the vector f representing the
total mass-normalized forces required by the quadrotor to
follow the trajectory:

f :=

[
ẍ
ÿ
z̈

]
+

[
0
0
g

]
= O

VR

[
0
0
a

]
. (5)

Using the two-norm (denoted by ‖·‖), the thrust a required
to follow the trajectory can be calculated:
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Example: Autonomous Quadrocopter flight

[IDSC, ETH Zurich]

dandrea mpc
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Example: Energy Efficient Building Control

• Buildings account for ≈ 40% of global energy use
• Most of the energy is consumed during the use of the
buildings

• Building sector has large potential for cost-effective reduction
of CO2 emissions

• Most investments in buidlings are expected to pay back
through reduced energy bills

Use of MPC for Building Control 

4. March 2010, ETH Zurich MeteoSwiss 

Why Buildings?  (4/4) 

 7  

Source: Watson, J. (ed.) (2008):  Sustainable Urban Infrastructure, London Edition – a view to 2025.  

Siemens AG, Corporate Communications (CC) Munich, 71pp. 

Greenhouse gas abatement cost curve for London buildings (2025, decision maker perspective) 

Most investments in buildings are expected to  

pay back through reduced energy bills 
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Example: Energy Efficient Building Control
Application "Integrated Room Automation":
Integrated control of heating, cooling, ventilation,
electrical lighting, blinds,... of a single room/zone

Control Task: Use minimum amount of energy (or money) to keep room
temperature, illuminance level and CO2 concentration in prescribed comfort
ranges

Use of MPC for Building Control 

4. March 2010, ETH Zurich MeteoSwiss 

Control Task 

Use minimum amount of energy (or money) to keep the  

room temperature, illuminance level and CO2 concentration 

in prescribed comfort ranges 

 9  
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Example: One-Zone Building
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•  EnergyPlus model of a single zone

•  Automatic extraction and linearization: 

openBuild tool

•  Electric heating

•  Weather: Jan, 2007 in San Francisco


Four states:

x1 
Zone temp

x2..x4 
Wall temps


Input:

Heat flux to 

zone


Disturbance:

Solar radiation


Disturbance:

External 

temperature


x+ = Ax + Bu + EYHKvYHK + EHTITHTI



min
u

N�

i=0

|ui |

Z�[� xi+1 = Axi + Bui + Eradvi ,YHK + EambTi ,HTI

yi = cT · xi
|yi � 21| � 2

0 � ui � 1

Problem Formulation: Simplest Configuration
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Forecast 
temperature / 

solar radiation i 
steps in the future


Output : Room 
temperature


Input: Heating 
0-100%


Comfort 
constraints


Minimize total 
thermal 

energy use
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Annualized energy used: 81.6 kWh / m2


H
ea

t i
np

ut
 (P

er
ce

nt
ag

e)

Time (Days)
0 1 2 3 4 5 6 7 8

0

1

2

3

4

Zone Temp


Amb Temp


Solar rad


Input heat


Comfort 
constraint 
satisfied


Heat when 
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min
u

N�

i=0

|ui |

Z�[� xi+1 = Axi + Bui + Eradvi ,YHK + EambTi ,HTI

yi = cT · xi
|yi � 21| � 2 + �i

0 � ui � 1

Problem Formulation: Nighttime Setbacks & Pre-cooling
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Nighttime setbacks


�i =
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Annualized energy used: 55.7 kWh / m2


Zone Temp


Amb Temp


Solar rad


Input heat


Timing of 
setback is 
automatic


Early-
morning 

pre-heating




min
u

N�

i=0

ci · |ui |

Z�[� xi+1 = Axi + Bui + Eradvi ,YHK + EambTi ,HTI

yi = cT · xi
|yi � 21| � 2 + �i

0 � ui � 1

Problem Formulation: Time-of-Use Pricing
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Time-of-Use Tariff


ci :=

�
cKH` +H`[PTL 9h � 18h

cUPNO[ 5PNO[[PTL 18h � 9h
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Annualized energy used: 71.3 kWh / m2


Zone Temp


Amb Temp


Solar rad


Input heat


Time-of-use 
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Energy (kWh / m2)


MPC with 
Setbacks


MPC


MPC 
variable tariff


PI


Conclusion:

MPC is easy to tune / 
describe complex goals




Playing the Market: New York Demand
Response

Can bid ‘negawatts’ on open market - Paid to reduce consumption

Question: Reduce from what?!

Complex regulations define ‘baseline’: function of usage over x previous days

Can we ‘control’ our benchmark to gain income?
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Fig. 2. Normalized Cumulative Cost
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Fig. 3. Savings as percentage of minimum cost without DR

period. The results are normalized with respect to the total
cost of minimum cost trajectory without DR [no DR]. It
can be seen that the total DR profit (top red line) amounts
to 40% of the total minimum energy cost resulting in a
net saving of 33%, as illustrated in Fig. 3. It can further
be seen in Fig. 2 that the cumulative profit generated by
DR participation is in steps, i.e., profit increase only when
the building is participating in the DR event. Notice that
the cumulative DR profit increase quite sharply between
the day 30 to 34, and the day 41 to 45. The reason
for this is the particularly high day-ahead price during
this period. Towards the end of the simulation period,
the cumulative DR profit increases very slowly because
of relatively low day-ahead prices during this period. The
cumulative cost of energy consumption (bottom red line)
is seen to increase with small ripples. This is due to the
fact that the energy consumption is high during the o�ce
hours and low otherwise. Small relatively flat parts on this
line correspond to a drop in outside temperature.

In order to investigate the impact of the participation
strategy on the savings potential, we performed a set of
simulations [DR] with di↵erent floor prices for partici-
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35

With 
weather rule

Without 
weather rule

Fig. 4. Savings compared to the minimum energy trajec-
tory [no DR] against minimum bidding level

pation ranging from 75$/MWh to 200$/MWh. Savings
compared to the minimum cost trajectory without DR [no
DR] are depicted in Figure 4. As seen in this figure, the
maximum benefit is obtained by participating systemati-
cally above the minimum allowed floor price of 75$/MWh.
This suggests that a systematic bidding strategy at the
minimum price is reasonable, and this simple strategy is
the one adopted in [DR].

Q2: Bound on maximum savings under limited
forecasts: The maximum savings achievable for the com-
mercial building, under limited forecast is 23%. This result
is obtained by comparing the results of the minimum cost
trajectory without DR [no DR], with the minimum cost
operations with DR and limited forecast [DR & MPC],
as depicted in Fig. 2. In this figure, the cumulative DR
profit for [DR & MPC] (top blue line) is seen to have
similar trend as the cumulative DR profit for minimum
cost trajectory [DR] (top red line). This shows that the
MPC controller almost always decides to participate in the
DR event. However, the total DR profit for [DR & MPC]
amounts to about 28% of the total minimum energy cost
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Mathematical formulation

Plant


plant state x 

Output y 

u�(x) = {u�0, . . . , u�N�1}

u�(x) := argmin xTNQf xN +

N�1�

i=0

xTi Qxi + uTi Rui

���� x0 = x ���������
�

xi+1 = Axi + Bui ������������

Cxi +Dui � b ��
����

��

R ⇥ 0, Q ⇥ 0 ��������
�����
�	��

Each sample time:

• Measure /estimate current state
• Find the optimal input sequence for the entire planning window
• Implement only the first control action

Introduction 1–30 Model Predictive Control ME-425



Summarizing

Need:

• A model of the system
• A state observer
• Define the optimal control problem
• Set up the optimization problem
• Get the optimal control sequence (solve the optimization problem)
• Verify that the closed-loop system performs as desired,
e.g., check performance criteria, robustness, real-time aspects,...
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Important aspects of Model Predictive Control

Main advantages:

• Systematic approach for handling constraints
• High performance controller

Main challenges:

• Feasibility:
Optimization problem may become infeasible at some future time step, i.e.
there does not exist a plan satisfying all constraints

• Stability:
Closed-loop stability, i.e. convergence, is not guaranteed

• Robustness:
The closed-loop system is not robust against uncertainties or disturbances

• Implementation:
MPC problem has to be solved in real-time, i.e. within the sampling time of
the system, and with available hardware (storage, processor,...).
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Outline

1. Introduction to MPC
• Concept
• The math
• Examples

2. Administration
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Course information
Professor: Colin Jones, Room ME C2 408

colin.jones@epfl.ch

Lectures: Pre-recorded
- Videos and weekly schedule on moodle

Supervision: Fridays 15h15 - 17h00
- In person in Room CE 4
- Asynchronously via Ed Discussion (link on moodle)

Lecture Notes: On moodle

All details will be updated on Moodle
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Exam & Grades
Written Exam 60%

Mini-Project 40%

Exercises Not graded
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Class Schedule
Week 1 Introduction
Week 2 Unconstrained control
Week 3 Optimization
Week 4 Constrained systems
Week 5 MPC
Week 6 Practical MPC
Week 7 Robust MPC
Week 8 Robust MPC
Week 9 Advanced topics in MPC
Week 10 Advanced topics in MPC
Week 11 Advanced topics in MPC
Week 12 Mini-project and guest speakers
Week 13 Mini-project and guest speakers
Week 14 Mini-project and guest speakers
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Mini-project

• Groups of three
• Report worth 40% of the final grade
• Three-week project
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Literature
No required textbook

Model Predictive Control:
• Model Predictive Control: Theory and Design, James B. Rawlings and David
Q. Mayne, 2009 Nob Hill Publishing

• Predictive Control with Constraints, Jan Maciejowski, 2000 Prentice Hall
• Predictive Control for linear and hybrid systems, 2014 F. Borrelli, A.
Bemporad and M. Morari
Available for free at
http://www.mpc.berkeley.edu/mpc-course-material

Optimization:
• Convex Optimization, Stephen Boyd and Lieven Vandenberghe, 2004
Cambridge University Press

• Numerical Optimization, Jorge Nocedal and Stephen Wright, 2006 Springer

0Parts of the notes in this lecture are based on or have been extracted from: Linear
Dynamical Systems, Stephen Boyd, Stanford; Convex Optimization, Stephen Boyd, Stanford;
Model Predictive Control, Manfred Morari, ETH Zurich; Model Predictive Control, Francesco
Borrelli, Berkeley
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Summary

• MPC uses a model of the system to predict the future trajectory
• We minimize a value function to choose the ‘best’ of these future trajectories
• Benefit: Nonlinear, constrained systems with complex objectives
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