

Problem 1.

When a question has more than one correct answer, mark all statements that are true.

1) Suppose that Y is a robust control invariant set for the system $x^+ = Ax + Bu + w$ subject to the state and input constraints X and U and the noise $w \in W$. For which of the following scenarios is Y still a robust invariant set for the resulting system?

- Disturbance set changes to $2W$
- Disturbance set changes to $0.5W$
- Input constraint set changes to $2U$
- Input constraint set changes to $U + 1$
- State constraint set changes to $-X$

2) Consider the system $x^+ = Ax + u + w$ subject to the constraints $\|x\| \leq 1$ and $\|u\| \leq 1$ and a bounded disturbance w , $\|w\| \leq 0.1$. If $A = \begin{bmatrix} 1 & 0 \\ 1 & 1.2 \end{bmatrix}$, what is the set of feasible states of an open-loop robust MPC problem as the horizon goes to infinity?

- \emptyset
- It won't converge
- \mathbb{R}^n
- A circle

3) Let $\pi(x) = K(x - z_0^*(x)) + v_0^*(x)$ be a tube-MPC control law, designed for the system $x^+ = Ax + Bu + w$ which is subject to the constraints $x \in X$, $u \in U$ and the disturbance $w \in W$. Let the set \mathcal{E} be the minimum robust invariant set for the system $x^+ = (A + BK)x + w$ for $w \in W$. Suppose now that this controller is applied to the system but that the observed noise only lies within the set $\bar{W} = 0.5W$.

What is the set to which the closed-loop system will converge to in the limit?

- Not enough information
- The system does not converge
- \mathcal{E}
- The terminal set of the MPC control law
- $0.5\mathcal{E}$

4) Consider the system $x^+ = Ax + Bu$, which is subject to the constraints $x \in X$ and $u \in U$. Let $u^*(x) = \operatorname{argmin}\{\|u\| \mid Ax + Bu \in C_\infty, u \in U\}$, where C_∞ is the maximum control invariant set for this system. Let the state input sequence $\{x_i, u_i\}$ be generated by this system with $x_0 \in C_\infty$. Mark the correct statements.

- $x_i \in X$ and $u_i \in U$ for all i
- There may exist an $x_0 \in C_\infty$ such that $x_i \notin X$ for some i
- The system is asymptotically stable
- $\lim_{i \rightarrow \infty} \|x_i\|_\infty = 0$
- $\lim_{i \rightarrow \infty} \|u_i\|_1 = 0$

5) Consider the following optimization problem, which has a local optimizer at $x = x^*$

$$\begin{aligned} \min \quad & c^T x \\ \text{s.t.} \quad & x^T Q x + q^T x \geq 1 \end{aligned}$$

Which conditions guarantee that x^* is also a global minimum?

- Q positive definite
- Q positive semi-definite
- Q negative semi-definite
- $c > 0$
- $q > 0$

6) Consider the quadratic programming problem

$$\begin{aligned}
 p^* &= \min \frac{1}{2} z^T Hz + q^T z \\
 \text{s.t.} \quad & \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} z \leq d \\
 & \begin{bmatrix} 1 & 10 \\ 2 & 20 \end{bmatrix} z = b
 \end{aligned}$$

i) Is it possible to choose d and b so that the feasible set is empty?

- Yes
- No
- Depends on H and q

ii) Is it possible to choose d and b so that the feasible set is nonconvex?

- Yes
- No
- Depends on whether H is symmetric

iii) Let $z \in \mathbb{R}^2$. Which of the following H matrices results in a nonconvex optimization problem?

$\begin{bmatrix} 0.9 & 0 \\ 0 & 3 \end{bmatrix}$

$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

$\begin{bmatrix} 0.8 & 0 \\ 0 & -0.8 \end{bmatrix}$

$\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$

None of the above

iv) Does there exist a bounded matrix H , a vector q and vectors d and b such that

$p^* = -\infty$ Yes No Not enough information

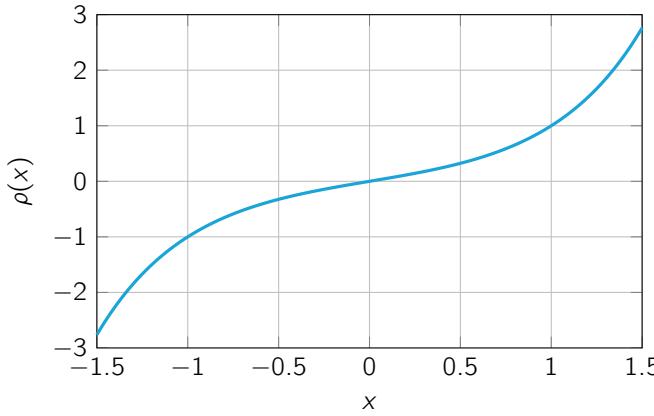
$p^* = \infty$ Yes No Not enough information

7) For which of the following cases is the optimization problem convex?

$$\begin{aligned} \min \quad & f(x) \\ \text{s.t. } & g(x) \geq 5 \end{aligned}$$

<input type="radio"/> $f(x) = x^T x - \ x\ _1$	$g(x) = x^T x$
<input type="radio"/> $f(x) = -x^T x + \ x\ _1$	$g(x) = -x^T x$
<input type="radio"/> $f(x) = [1 \ 2] x$	$g(x) = \ -4x \ _\infty$
<input type="radio"/> $f(x) = [1 \ 2] x$	$g(x) = e^{-x_1} + e^{-x_2}$
<input type="radio"/> None of the above	

8) What is the maximum invariant set of the scalar system $x^+ = \rho(x)$ contained in the set $X = \{x \mid \|x\|_\infty \leq 1.5\}$ where the function $\rho(x)$ is plotted below



<input type="radio"/> $\{x \mid -1 \leq x \leq 1\}$
<input type="radio"/> X
<input type="radio"/> $\{x \mid x \geq 0\}$
<input type="radio"/> \emptyset
<input type="radio"/> \mathbb{R}
<input type="radio"/> None of the above

9) Consider the system $x^+ = 4x + 5 + u$ subject to the constraints $|u| \leq 5$ and $|x| \leq 1$.

i) What is the pre-set of the set $\Omega = \{x \mid \alpha \leq x \leq \beta\}$?

$[\alpha - 10, \beta]$ $[\alpha, \beta + 5]$ $\frac{1}{4}[\alpha - 10, \beta]$ $\frac{1}{2}[-\alpha, -\beta]$ \mathbb{R}

ii) What is the maximum control invariant set?

$[-1, 1]$ $\frac{1}{4}[-1, 1]$ \emptyset $[-1, 0]$ \mathbb{R}

10) Consider the system $x^+ = 2x + 1 + u$ subject to the constraints $u \leq 0$. Which of the following sets are control invariant?

<input type="radio"/> $\{0, 1, 2\}$
<input type="radio"/> $\{x \mid \ x\ \leq 1\}$
<input type="radio"/> $\{x \mid x \leq 0\}$
<input type="radio"/> $\{x \mid x \geq 0\}$
<input type="radio"/> \mathbb{R}

11) Let x_0 be a state in the maximum control invariant set \mathcal{C}_∞ for the system $x^+ = f(x, u)$ under the constraints $(x, u) \in \mathbb{X} \times \mathbb{U}$. Is it possible that there exists a controller $\kappa(x)$ such that the 3-step sequence $\{x_0, x_1, x_2\}$ is in \mathbb{X} and $\{\kappa(x_0), \kappa(x_1)\}$ is in \mathbb{U} , where $x_1 = f(x_0, \kappa(x_0))$ and $x_2 = f(x_1, \kappa(x_1))$?

Yes No

12) Consider the following standard MPC problem which generates the control law $\pi_N(x)$

$$\begin{aligned} J_N^*(x) = \min & \sum_{i=0}^{N-1} l(x_i, u_i) \\ \text{s.t. } & x_{i+1} = Ax_i + Bu_i \\ & (x_i, u_i) \in X \times U \\ & x_N = 0 \end{aligned}$$

i) Assume for all of the following cases that the state x is feasible and non-zero and mark the correct statements.

- $J_N^*(x) < J_{N-1}^*(x)$
- $J_{N-1}^*(x) < J_N^*(Ax + B\pi_N(x))$
- $J_{N-1}^*(x) > J_N^*(Ax + B\pi_{N-1}(x))$
- $J_N^*(Ax + B\pi_{N-1}(x)) = J_{N-1}^*(x)$
- $J_{N-1}^*(Ax + B\pi_N(x)) = J_N^*(x) - l(x, \pi_N(x))$
- $J_{N-1}^*(Ax + B\pi_N(x)) < J_N^*(x) - l(x, \pi_N(x))$

ii) Let $\{z_i^N(x)\}$ be the closed-loop sequence generated by the dynamic system $z^+ = Az + Bu$ starting at state x , and the function $\bar{J}_N(x) = \sum_{i=0}^{\infty} l(z_i^N(x), \pi_N(z_i^N(x)))$ be the resulting closed-loop cost. Mark all statements that are correct for all feasible, non-zero x

- $\bar{J}_N(x) \leq J_N^*(x)$
- $\bar{J}_N(x) \leq \bar{J}_{N-1}(x)$
- $\bar{J}_N(x) \geq \bar{J}_{N-1}(x)$
- $\lim_{N \rightarrow \infty} \bar{J}_N(x) = \lim_{N \rightarrow \infty} J_{N-1}^*(x)$
- $\lim_{N \rightarrow \infty} \bar{J}_N(x) > \lim_{N \rightarrow \infty} J_{N-1}^*(x)$
- $\lim_{N \rightarrow \infty} \bar{J}_N(x) < \lim_{N \rightarrow \infty} J_{N-1}^*(x)$

iii) If the state x is feasible for the MPC problem above and the controller $\pi_N(x)$ is applied, then the closed-loop system will arrive at the origin in exactly N steps.

- True
- False

13) A controller is called static if its output depends only on its input, and not on an internal state. Which of the controllers studied in class are static?

- Nominal MPC regulation
- Offset-free MPC
- Tube-MPC
- Open-loop robust MPC

14) The function V_f is a Lyapunov function for the system $x^+ = Ax$, the stage cost I is positive definite and the MPC controller $\pi(x)$ defined by the following optimization problem is recursively feasible and stabilizes the closed-loop system $x^+ = Ax + B\pi(x)$ for a prediction horizon of $N = N_0$. Mark all statements that are correct.

$$\begin{aligned} \min & \sum_{i=0}^{N-1} I(x_i, u_i) + V_f(x_N) \\ \text{s.t. } & x_{i+1} = Ax_i + Bu_i \quad \forall i = 0, \dots, N-1 \\ & u_i \in U \quad \forall i = 0, \dots, N-1 \end{aligned}$$

The closed-loop system...

- ... is stable for a prediction horizon $N > N_0$, but it may not be recursively feasible
- ... is stable and recursively feasible for any prediction horizon $N \geq N_0$
- ... may be stable for a prediction horizon $N < N_0$, but it may not be recursively feasible
- ... is stable and recursively feasible for any prediction horizon $N \leq N_0$
- ... is recursively feasible for a prediction horizon $N < N_0$, but may not be stable

15) Consider the following MPC problems

$$\begin{aligned} J_{LQR}^*(x_0) &= \min \sum_{i=0}^{N-1} I(x_i, u_i) + V_f(x_N) & J_{C_\infty}^*(x_0) &= \min \sum_{i=0}^{N-1} I(x_i, u_i) + V_f(x_N) \\ \text{s.t. } & x_{i+1} = Ax_i + Bu_i & \text{s.t. } & x_{i+1} = Ax_i + Bu_i \\ & x_i \in X, \ u_i \in U & x_i \in X, \ u_i \in U & \\ & x_N \in X_{LQR} & x_N \in C_\infty & \end{aligned}$$

where $I(x, u) = x^T Q x + u^T R u$ and $V_f(x)$ is the optimal value function of the corresponding LQR controller. X_{LQR} is the maximum invariant set for the system $x^+ = (A+BK)x$ for the LQR control law K subject to the constraints $x \in X$ and $Kx \in U$, and C_∞ is the maximum control invariant set for the system $x^+ = Ax + Bu$ subject to the constraints $x \in X$ and $u \in U$. If the problem is infeasible, we define the optimal value to be $+\infty$. Mark all the correct statements.

- $J_{LQR}^*(x) \leq J_{C_\infty}^*(x)$ for all x
- $J_{LQR}^*(x) \geq J_{C_\infty}^*(x)$ for all x
- $J_{C_\infty}^*(x)$ is recursively feasible
- $J_{C_\infty}^*(x)$ is a Lyapunov function for the system $x^+ = Ax + Bu_{LQR}^*(x)$
- The domain of J_{LQR}^* contains the domain of $J_{C_\infty}^*$
- The domain of $J_{C_\infty}^*$ contains the domain of J_{LQR}^*

16) Give an example of a system for which you cannot use soft state constraints. Explain.

17) Give an example of a system for which you cannot use soft input constraints. Explain.

18) Let $\pi(x)$ be the MPC control law defined by the following optimization problem

$$\begin{aligned} J^*(x) = \min \quad & \sum_{i=0}^{N-1} l(x_i, u_i) + V_f(x_N) \\ \text{s.t.} \quad & x_{i+1} = Ax_i + Bu_i \\ & (x_i, u_i) \in X \times U \\ & x_N \in X_f \\ & x_0 = x \end{aligned}$$

where X , X_f and U are polyhedral sets, and l and V_f are positive definite quadratic functions that are zero at zero.

i) The control law $\pi(x)$...

- ... is a convex function
- ... is a piecewise affine function
- ... is an affine function
- ... is a piecewise quadratic function
- ... is a quadratic function
- ... has a polyhedral domain

ii) The value function $J^*(x)$...

- ... is a convex function
- ... is a piecewise affine function
- ... is an affine function
- ... is a piecewise quadratic function
- ... is a quadratic function
- ... has a polyhedral domain

19) Two infinite horizon LQR controllers are designed with weighting matrices Q_1 , R_1 used for the first one and Q_2 , R_2 used for the second one. It holds that $Q_1 = 10Q_2$ and $R_1 = 0.1R_2$. Which of the following statements is true?

- The first LQR controller will tend to use less input than the second one and will thus have slower convergence to the origin.
- The second LQR controller will tend to use less input than the first one and will thus have slower convergence to the origin.
- The speed of response depends only on the choice of the Q matrix.
- None of the above

20) Consider the following finite-horizon LQR controller u_0^* applied to the system $x^+ = Ax + Bu$ in a receding horizon fashion.

$$\min \sum_{i=0}^{N-1} x_i^T x_i + u_i^T u_i$$

s.t. $x_{i+1} = Ax_i + Bu_i$

Mark the correct statements:

- If the system is stable for $N = 5$, then it will also be stable for $N = 6$
- The system will be stable if N is at least five times larger than the largest eigenvalue of A
- The performance of the system will be better for $N = 6$ than it will be for $N = 5$
- None of the above

21) $V(x) = x^T x$ is a Lyapunov function for which of the following systems?

- $x^+ = x + u$
- $x^+ = \begin{bmatrix} 1.4 & 0 \\ 1 & 0.1 \end{bmatrix} x$
- $x^+ = 0.6x$
- None of the above

Problem 2.

Consider the finite-horizon optimal control problem

$$V_N^*(x_0) = \min \sum_{i=0}^N l(x_i, u_i) \quad \text{s.t.} \quad x_{i+1} = 3x_i + u_i$$

where the stage cost is

$$l(x, u) = \begin{pmatrix} x \\ u \end{pmatrix}^T \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix} \begin{pmatrix} x \\ u \end{pmatrix}$$

and let $\kappa_N(x)$ be the resulting MPC controller.

1) If the cost-to-go is $V_{i+1}(x) = x^T H x$, give an expression for $\kappa_i(x)$ and $V_i(x)$ as functions of H .

$$\kappa_i(x) = \boxed{\quad}$$

$$V_i(x) = \boxed{\quad}$$

2) Compute the smallest horizon N° and the controller $\kappa_{N^\circ}(x)$ such that the closed-loop system $x^+ = Ax + B\kappa_{N^\circ}(x)$ is asymptotically stable.

$$N^\circ = \boxed{\quad}$$

$$\kappa_{N^\circ}(x) = \boxed{\quad}$$

3) Suppose now that the system is subject to input constraints $|u| \leq 1$ and consider the MPC controller below

$$\begin{aligned} \min \quad & \sum_{i=0}^{10} l(x_i, u_i) + V_{N^c}(x_{10}) \\ \text{s.t.} \quad & x_{i+1} = 3x_i + u_i \quad \forall i = 0, \dots, 9 \\ & |u_i| \leq 1 \quad \forall i = 0, \dots, 9 \end{aligned}$$

What is the set of states $x_0 \in X_0$ for which this MPC controller has a solution?

$$X_0 = \boxed{\quad}$$

Will the closed-loop system $x^+ = 3x + u^*(x)$ be asymptotically stable for all $x \in X_0$, where $u^*(x)$ is the optimal answer of the above MPC problem?

Yes No

If yes, prove it. If no, explain why.

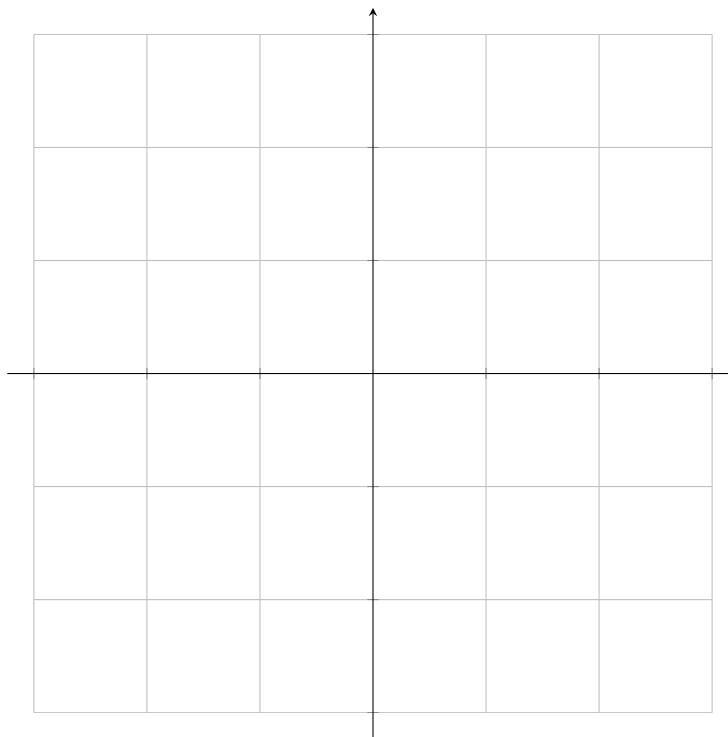
/ 15

Problem 3.

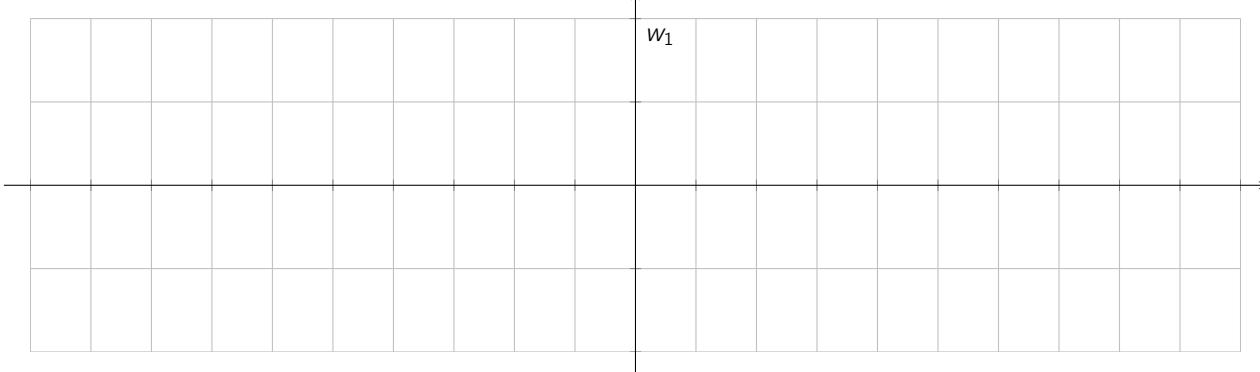
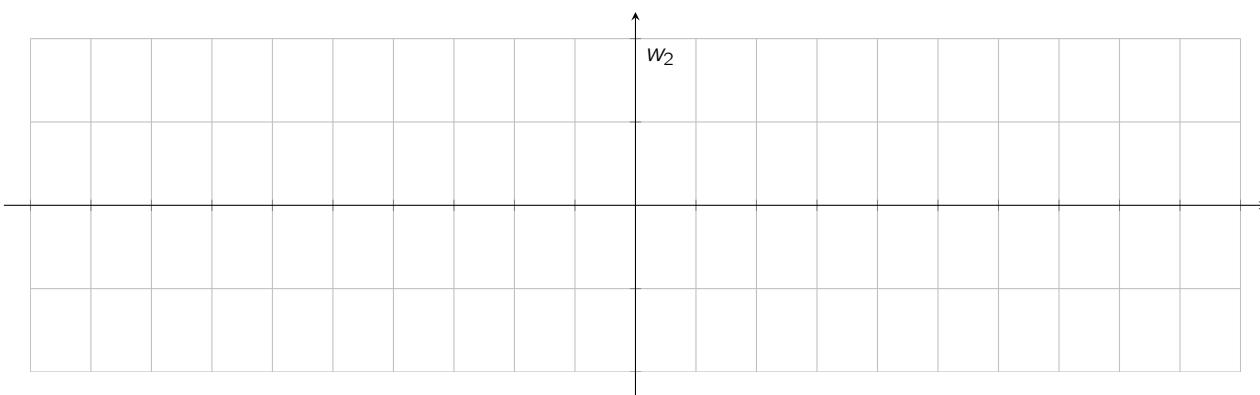
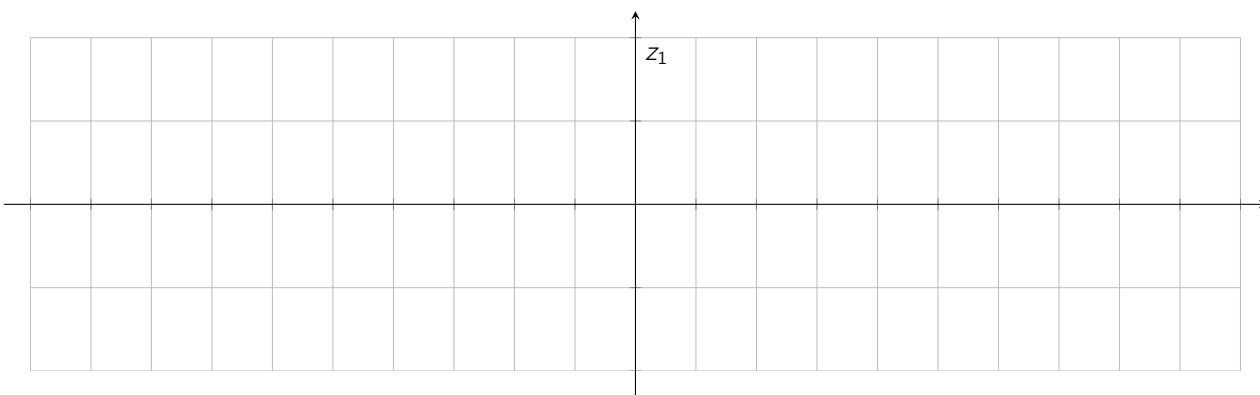
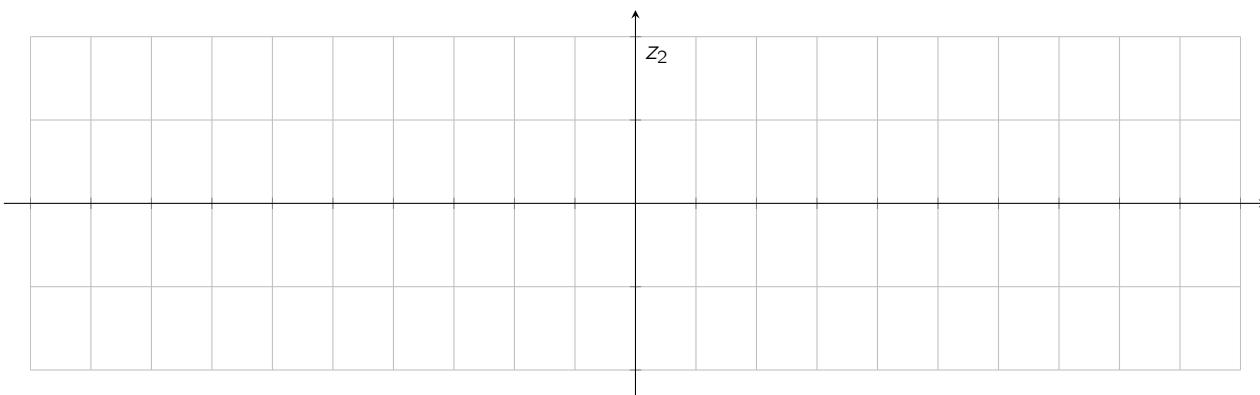
Consider the following parametric LCP

$$w - \begin{bmatrix} 1 & -1 \\ -1 & 2 \end{bmatrix} z = Qx + q$$
$$w, z \geq 0$$
$$w^T z = 0$$

- 1) Give the complementarity cones for this problem and sketch them.



2) Sketch the solution $w(x)$ and $z(x)$ for $Q = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and $q = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$.



Problem 4.

Recall the following definitions

$$X \oplus Y := \{x + y \mid x \in X, y \in Y\}$$

Minkowski sum of X and Y

$$\alpha X := \{\alpha x \mid x \in X\}$$

Scaling of a set

If X convex: $x_1, x_2 \in X \Rightarrow \alpha x_1 + (1 - \alpha)x_2 \in X \forall \alpha \in [0, 1]$

Convex set

1) Let X_1 and X_2 be convex invariant sets for the system $x^+ = Ax$. Show that $\alpha X_1 \oplus (1 - \alpha)X_2$ is also an invariant set for any $\alpha \in [0, 1]$.

2) Let $X_1 \subseteq \mathbb{X}$ and $X_2 \subseteq \mathbb{X}$, where X_1 , X_2 and \mathbb{X} are convex sets. Show that $\alpha X_1 \oplus (1 - \alpha)X_2 \subseteq \mathbb{X}$ for any $\alpha \in [0, 1]$.

3) Let $V_i(x) := x^T P_i x$ be a Lyapunov function for the system $x^+ = Ax$ for $i = 1, 2$, with a rate of decrease of $x^T \Gamma x$, i.e.:

$$V_i(x^+) - V_i(x) \leq -x^T \Gamma x .$$

Show that $V(x) = \alpha V_1(x) + (1 - \alpha)V_2(x)$ is also a Lyapunov function with a rate of decrease of $x^T \Gamma x$ for any $\alpha \in [0, 1]$.

4) Let K be a stabilizing controller for the system $x^+ = Ax + Bu$, and $X_i \subset \mathbb{X}$ be a convex invariant set for the system $x^+ = (A + BK)x$, with $KX_i \subset \mathbb{U}$ for each $i = 1, 2$. $V_i(x) = x^T P_i x$ are Lyapunov functions for the system $x^+ = (A + BK)x$ with a rate of decrease of $Q + K^T R K$, for some $Q = Q^T \succ 0$ and $R = R^T \succ 0$.

$$\begin{aligned}
 J^*(x(t)) = \min & \sum_{i=0}^N x_i^T Q x_i + u_i^T R u_i + \alpha V_1(x) + (1 - \alpha) V_2(x) \\
 \text{s.t. } & x_{i+1} = Ax_i + Bu_i, \quad i = 0, \dots, N \\
 & x_i \in \mathbb{X}, \quad i = 1, \dots, N \\
 & u_i \in \mathbb{U}, \quad i = 0, \dots, N-1 \\
 & x_N \in \alpha X_1 \oplus (1 - \alpha) X_2 \\
 & x_0 = x(t)
 \end{aligned}$$

Prove that this MPC controller is stabilizing and recursively feasible for any $\alpha \in [0, 1]$ by

- i) listing sufficient conditions for stability and
- ii) proving them

Hint: You can use the results of the previous three questions, even if you couldn't answer them.

/ 15

Problem 5.

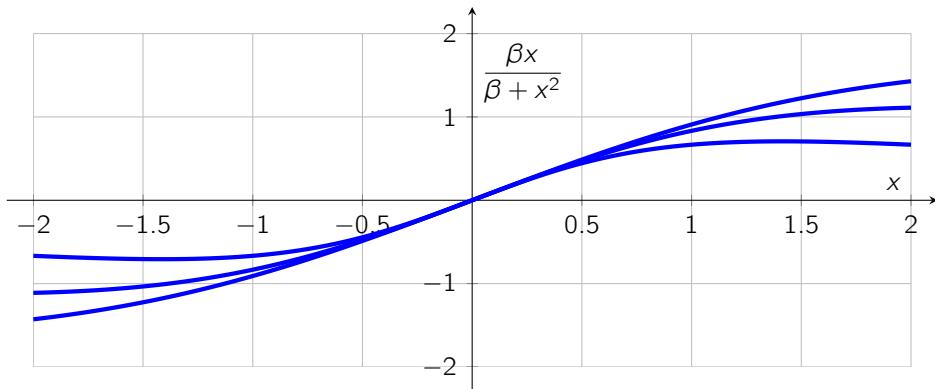
Consider the following nonlinear discrete-time dynamic system.

$$x^+ = \frac{\beta x}{\beta + x^2} + u := f(x, u)$$

subject to the state and input constraints $X = \{x \mid \|x\| \leq 1\}$ and $U = \{u \mid \|u\| \leq 0.2\}$. Treat β symbolically as a constant $\beta > 1$.

Your goal is to design a robust linear MPC controller for this nonlinear system to regulate it to the origin.

The function $\frac{\beta x}{\beta + x^2}$ is shown in the plot below for $\beta \in \{2, 5, 10\}$.



1) Find values a and b by linearizing the system around the origin and the smallest \bar{w} such that the evolution of the following uncertain linear dynamic system contains that of the nonlinear system above for all $x \in X$ and all $u \in U$.

$$x^+ = ax + bu + w \quad w \in \mathcal{W} = \bar{w} \cdot [-1, 1] \quad (1)$$

$$a =$$

$$b =$$

$$\bar{w} =$$

Hint: Ensure that $\forall (x, u) \in X \times U \ \exists w \in W$ such that $ax + bu + w = f(x, u)$

2) Compute the maximum robust invariant set X_f for the linear system in the previous part within the constraint set X for the control law $u = -0.5x$. Use the value $\bar{w} = 0.1$ for this question.

$$X_f =$$

3) Fill in the blanks in the following set so that any controller $u(x) \in C(x)$ will ensure robust constraint satisfaction for system (1). Use the value $\bar{w} = 0.1$ for this question.

4) Define the controller $u^*(x) = \operatorname{argmin}_{u \in C(x)} u^T u$, where $C(x)$ is the function from the previous part. Will the dynamic system $x^+ = f(x, u^*(x))$ satisfy the constraints $x \in X$ and $u \in U$? Explain your answer.

Yes No Not enough information

Problem 6.

Consider the following scalar system, which has the nonlinearity γ

$$\dot{x} = f(x, u) = x + u + \gamma(x) \quad (2)$$

subject to the constraints $|x| \leq 25$ and $-1 \leq u \leq 15$.

1) Discretize the system $x^+ = \phi(x, u)$ with a sample period of 1 second using Runge-Kutta 2. Assume that during the sample period, the input is constant, i.e., $u(t) = u_i$ for all $t \in [h_i, h(i+1)]$ for $i \in \{0, 1, 2, \dots\}$.

$$x^+ = \phi(x, u) \approx$$

2) Linearize the discrete-time system around the point $x_s = 0$ and $u_s = 0$ and for $\gamma(x) = \sin(x)$

$$x^+ \approx$$

3) Design a stabilizing and recursively feasible linear MPC controller for the linear discrete-time model computed in the last part.

4) If the input from your linear MPC controller is applied to the system (2), will the closed-loop system necessarily satisfy the constraints?

Yes No

If yes, prove that this is the case.

If no, give suggestions for how you can modify your controller to ensure that it does.