

Problem 1.

/25

When there are multiple choices in the following, select all statements that are true.

1. Consider the system $x^+ = 2x + 1 + u$ subject to the constraints $u \leq 0$. Which of the following sets are control invariant?

- $\{0, 1, 2\}$
- $\{x \mid \|x\| \leq 1\}$
- $\{x \mid x \leq 0\}$
- $\{x \mid x \geq 0\}$
- \mathbb{R}

2. Consider the system $x^+ = 4x + 5 + u$ subject to the constraints $|u| \leq 5$ and $|x| \leq 1$.

i) What is the pre-set of the set $\Omega = \{x \mid \alpha \leq x \leq \beta\}$?

- $[\alpha - 10, \beta]$
- $[\alpha, \beta + 5]$
- $\frac{1}{4}[\alpha - 10, \beta]$
- $\frac{1}{2}[-\alpha, -\beta]$
- \mathbb{R}

$\frac{1}{4}[\alpha - 10, \beta]$

ii) What is the maximum control invariant set?

- $[-1, 1]$
- $\frac{1}{4}[-1, 1]$
- \emptyset
- $[-1, 0]$
- \mathbb{R}

3. Consider the following standard MPC problem which generates the control law $\pi_N(x)$

$$J_N^*(x) = \min \sum_{i=0}^{N-1} I(x_i, u_i)$$

s.t. $x_{i+1} = Ax_i + Bu_i$
 $(x_i, u_i) \in X \times U$
 $x_N = 0$

i) Assume for all of the following cases that the state x is feasible and non-zero and mark the correct statements.

- $J_N^*(x) < J_{N-1}^*(x)$
- $J_{N-1}^*(x) < J_N^*(Ax + B\pi_N(x))$
- $J_{N-1}^*(x) > J_N^*(Ax + B\pi_{N-1}(x))$
- $J_N^*(Ax + B\pi_{N-1}(x)) = J_{N-1}^*(x)$
- $J_{N-1}^*(Ax + B\pi_N(x)) = J_N^*(x) - I(x, \pi_N(x))$
- $J_{N-1}^*(Ax + B\pi_N(x)) < J_N^*(x) - I(x, \pi_N(x))$

ii) Let $\{z_i^N(x)\}$ be the closed-loop sequence generated by the dynamic system $z^+ = Az + B\pi_N(z)$ starting at state x , and the function $\bar{J}_N(x) = \sum_{i=0}^{\infty} l(z_i^N(x), \pi_N(z_i^N(x)))$ be the resulting closed-loop cost. Mark all statements that are correct for all feasible, non-zero x

- $\bar{J}_N(x) \leq J^*(x)$
- $\bar{J}_N(x) \leq J_{N-1}(x)$
- $\bar{J}_N(x) \geq J_{N-1}(x)$
- $\lim_{N \rightarrow \infty} \bar{J}_N(x) = \lim_{N \rightarrow \infty} J_{N-1}(x)$
- $\lim_{N \rightarrow \infty} \bar{J}_N(x) > \lim_{N \rightarrow \infty} J_{N-1}(x)$
- $\lim_{N \rightarrow \infty} \bar{J}_N(x) < \lim_{N \rightarrow \infty} J_{N-1}(x)$

iii) If the state x is feasible for the MPC problem above and the controller $\pi_N(x)$ is applied, then the closed-loop system will arrive at the origin in exactly N steps.

- True
- False

4. Consider the following parametric optimization problem:

$$\begin{aligned} J^*(x, y) = \min_u & -4x^2 + xu_1 + u_1^2 + yu_1u_2 + 3 + xu_1^2 \\ \text{s.t. } & \left\| \begin{bmatrix} 1 & 2 \\ 3y & 4 \end{bmatrix} u + (7-x) \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right\|_{\infty} \leq x + [3 \ 7] u \end{aligned}$$

(Mark all correct statements)

i) The feasible set of this problem is convex for

- any x or y
- no x or y
- $x \geq 0$ and any y
- $x = 0$ and $y = 2/3$
- $x \geq -1$ and $y = 0$

ii) The problem is convex for

- any x or y
- no x or y
- $x \geq 0$ and any y
- $x = 0$ and $y = 2/3$
- $x \geq -1$ and $y = 0$

Hint: A 2×2 symmetric matrix A is positive semidefinite if and only if $\det A \geq 0$ and $\text{trace } A \geq 0$

5. Mark all invariant sets of the system $x^+ = x^2$ contained within the constraint set $X = \{x \mid |x| \leq 2\}$

- $\{x \mid -1 \leq x \leq 1\}$
- X
- $\{x \mid 0 \leq x \leq 1\}$
- $\{0\}$
- $\{1\}$
- $\{-1, 0, 1\}$
- $\{-1\}$

6. If X is an invariant set for the system $x^+ = f(x)$, then αX is too. Mark all conditions under which this statement is true.

- f is linear, $\alpha > 0$
- f is linear, $\alpha < 0$
- f is smooth
- Always false
- $\alpha > 0$
- $\alpha = 0$

7. T and Q are invariant sets for the system $x^+ = f(x)$. Mark the correct statements.

- $T \cap Q$ is invariant
- $T \cup Q$ is invariant

8. Give an example of a system that benefits from using soft state constraints.

9. Give an example of a system that benefits from using soft input constraints.

Any system where we're limiting the input to prevent wear on the actuators, but they are physically capable of more.

10. Consider the following optimization problem, which has a local optimizer at $x = x^*$

$$\begin{aligned} \min \quad & c^T x \\ \text{s.t.} \quad & x^T Q x + q^T x \geq 1 \end{aligned}$$

Which conditions guarantee that x^* is also a global minimum?

- Q positive definite
- Q positive semi-definite
- Q negative semi-definite
- $c > 0$
- $q > 0$

11. Suppose that Y is a robust control invariant set for the system $x^+ = Ax + Bu + w$ subject to the state and input constraints X and U and the noise $w \in W$. For which of the following scenarios is Y still a robust invariant set for the resulting system?

- Disturbance set changes to $2W$
- Disturbance set changes to $0.5W$
- Input constraint set changes to $2U$
- Input constraint set changes to $U + 1$
- State constraint set changes to $-X$

12. Let x_0 be a state in the maximum control invariant set \mathcal{C}_∞ for the system $x^+ = f(x, u)$ under the constraints $(x, u) \in \mathbb{X} \times \mathbb{U}$. Is it possible that there exists a controller $\kappa(x)$ such that the 3-step sequence $\{x_0, x_1, x_2\}$ is in \mathbb{X} and $\{\kappa(x_0), \kappa(x_1)\}$ is in \mathbb{U} , where $x_1 = f(x_0, \kappa(x_0))$ and $x_2 = f(x_1, \kappa(x_1))$?

- Yes
- No

13. A controller is called static if its output depends only on its input, and not on an internal state. Which of the controllers studied in class are static?

- Nominal MPC regulation
- Offset-free MPC
- Tube-MPC
- Open-loop robust MPC

14. Consider the system $x^+ = Ax + u + w$ subject to the constraints $\|x\| \leq 1$ and $\|u\| \leq 1$ and a bounded disturbance w , $\|w\| \leq 0.1$. If $A = \begin{bmatrix} 1 & 0 \\ 1 & 1.2 \end{bmatrix}$, what is the set of feasible states of an open-loop robust MPC problem as the horizon goes to infinity?

- \emptyset
- It won't converge
- \mathbb{R}^n
- A circle

15. If Y is a robust control invariant set for the system $x^+ = f(x, u) + w$ subject to the constraints $(x, u) \in X \times U$ and $w \in W$, is Y also a control invariant set for the system $x^+ = f(x, u)$?

- Yes
- No

Problem 2.

/15

Consider the finite-horizon optimal control problem

$$V_N^*(x_0) = \min \sum_{i=0}^N l(x_i, u_i) \quad \text{s.t.} \quad x_{i+1} = 2x_i + u_i$$

where the stage cost is

$$l(x, u) = \begin{pmatrix} x \\ u \end{pmatrix}^T \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix} \begin{pmatrix} x \\ u \end{pmatrix}$$

and let $\kappa_N(x)$ be the resulting MPC controller.

1. Give the bellman recursion for this problem.
2. Compute the smallest horizon N° such that the closed-loop system $x^+ = Ax + B\kappa_{N^\circ}(x)$ is asymptotically stable.

$$N^\circ = 2$$

3. Suppose now that the system is subject to input constraints $u \in U$ and consider the MPC controller below

$$\begin{aligned} \min \quad & \sum_{i=0}^N l(x_i, u_i) + V_{N^\circ}(x_N) \\ \text{s.t.} \quad & x_{i+1} = 2x_i + u_i \\ & u_i \in U \end{aligned}$$

Will the closed-loop system $x^+ = 2x + u^*(x)$ be asymptotically stable, where $u^*(x)$ is the optimal solution of the above MPC problem? Why, or why not?

No. The system is unstable and there is no terminal set. With bounded inputs there will be a sufficiently large feasible initial state x such that there is insufficient control authority to stabilize the system.

Problem 3.

/15

1. Consider the dynamic system $x^+ = \begin{bmatrix} 0.5 & 0.5 \\ 0.5 & -0.5 \end{bmatrix} x$

- i) Show that the set $E = \{x \mid x'x \leq 1\}$ is invariant
- ii) Give a Lyapunov function for this system

2. Consider the MPC controller $u^*(x)$ defined by the following optimization problem

$$\min \sum_{i=0}^{N-1} \|x_i\|^2 + u_i^2 + V_f(x_N)$$

$$\text{s.t. } x_{i+1} = Ax_i + Bu_i$$

$$-1 \leq u_i \leq 1$$

$$x_N \in X_f$$

- i) State conditions on V_f and X_f such that the MPC controller is recursively feasible and invariant and the closed-loop system $x^+ = Ax + Bu^*(x)$ is asymptotically stable.
- ii) Give a non-trivial set X_f (i.e., not $\{0\}$) and non-zero function V_f that satisfy your conditions for the following system

$$A = \begin{bmatrix} 2.5 & 3.5 \\ 4.5 & 5.5 \end{bmatrix} \quad B = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

Hint : Helpful relation

$$13x'x \geq x' \begin{bmatrix} 4 & 6 \\ 6 & 9 \end{bmatrix} x \quad \forall x$$

Problem 4.

/15

Consider the dynamic system

$$\begin{aligned} x^+ &= Ax + Bu \\ y &= Cx \end{aligned} \tag{1}$$

subject to input constraint U , which is non-empty and contains the origin, and the following MPC formulation

$$\begin{aligned} J(x, r) = \min_{x, u, y, x_s, u_s} & \sum_{i=0}^{N-1} l(x_i - x_s, u_i - u_s) + V_f(x_N - x_s) \\ \text{s.t.} & \quad x_{i+1} = Ax_i + Bu_i \quad i = 0, \dots, N-1 \\ & \quad u_i \in U \quad i = 0, \dots, N-1 \\ & \quad x_N - x_s \in X_f \\ & \quad x_s = Ax_s + Bu_s \\ & \quad r = Cx_s \\ & \quad u_s \in U \\ & \quad x_0 = x \end{aligned} \tag{2}$$

Denote the MPC control law resulting from the above optimization problem as $\pi(x, r)$.

1. Give conditions on the reference r , the stage cost l , the terminal cost V_f , the terminal set X_f and the system dynamics A, B, C such that the output of the closed-loop system $x^+ = Ax + B\pi(x, r)$, asymptotically converges to the reference r without violating the system constraints; $\lim_{i \rightarrow \infty} y_i = r$ and $\pi(x_i, r) \in U, \forall i$.
2. Sketch a proof showing that the system converges for a given constant r under the conditions given in the previous question.
3. Propose a modification to (2), so that the following conditions are met:
 - If a feasible solution exists for $(x, 0)$ in your controller, then for all r a feasible solution exists for (x, r)
 - If the closed-loop system converges to the reference without violating constraints for controller (2), then it does for your controller too.

Problem 5.

/15

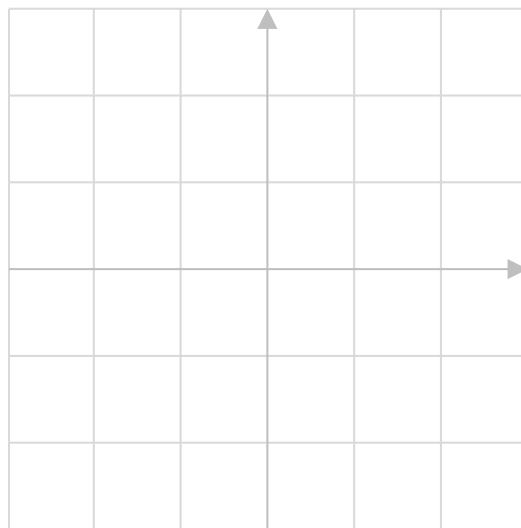
Consider the following parametric LCP

$$w - \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix} z = Qx + q$$

$$w, z \geq 0$$

$$w^T z = 0$$

1. Give the complementarity cones for this problem and sketch them.



Enumerate all complementarity bases

$$z_1 = z_2 = 0 \quad \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{pmatrix} w_1 \\ w_2 \end{pmatrix} = q$$

$$\begin{pmatrix} w_1 \\ w_2 \end{pmatrix} = q$$

$$w_1 = w_2 = 0 \quad \begin{bmatrix} 0 & 1 \\ 1 & -1 \end{bmatrix} \begin{pmatrix} z_1 \\ z_2 \end{pmatrix} = q$$

$$\begin{pmatrix} z_1 \\ z_2 \end{pmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} q$$

$$z_1 = z_2 = 0 \quad \begin{bmatrix} 1 & 1 \\ -1 & 0 \end{bmatrix} \begin{pmatrix} z_2 \\ w_1 \end{pmatrix} = q$$

$$\begin{pmatrix} z_2 \\ w_1 \end{pmatrix} = \begin{bmatrix} 0 & -1 \\ 1 & 1 \end{bmatrix} q$$

$$w_1 = z_2 = 0 \quad \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix} \begin{pmatrix} z_1 \\ w_2 \end{pmatrix} = q$$

Not invertible - empty set

So the complementarity cones are:

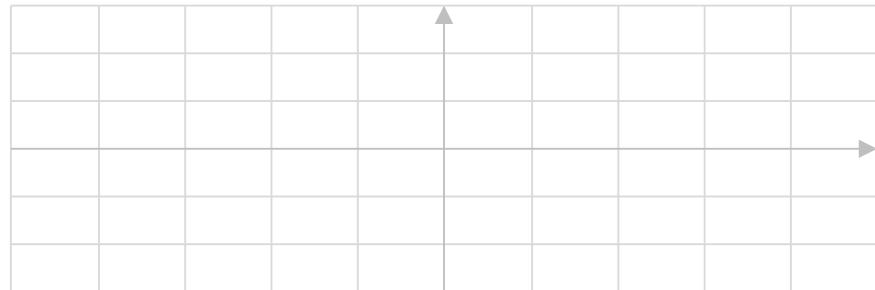
$$K_1 = \{q \mid q \geq 0\}$$

$$K_2 = \left\{ q \mid \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} q \geq 0 \right\}$$

$$K_3 = \left\{ q \mid \begin{bmatrix} 0 & -1 \\ 1 & 1 \end{bmatrix} q \geq 0 \right\}$$

2. Sketch the solution $w(x)$ and $z(x)$ for $Q = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and $q = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$.

$w_1(x)$



$w_2(x)$

$z_1(x)$

$z_2(x)$

Problem 6.

/15

Consider the following nonlinear discrete-time dynamic system

$$x^+ = \frac{1}{6}(x-1)^3 + \frac{1}{6} + u := f(x, u)$$

subject to the state and input constraints $X = \{x \mid |x| \leq 1/2\}$ and $U = \{u \mid |u| \leq 1\}$.

Your goal is to design a robust *linear* MPC controller for this system to regulate it to the origin.

- Find values a and b by linearizing the system around the origin and the smallest \bar{w} such that the evolution of the following uncertain linear dynamic system contains that of the nonlinear system above within the set X .

$$x^+ = ax + bu + w \quad w \in W = \bar{w} \cdot [-1, 1] \quad (3)$$

$$a = \underline{\hspace{2cm}} \quad b = \underline{\hspace{2cm}} \quad \bar{w} = \underline{\hspace{2cm}}$$

Hint: Ensure that $\forall x \in X \exists w \in W$ such that $ax + bu + w = f(x, u)$

$$a = 0.5$$

$$b = 1$$

$$\bar{w} = \frac{7}{48}$$

- Compute the maximum robust invariant set X_f for the system (3) within the constraint set X for the control law $u = 0$. Use the value $\bar{w} = 0.2$ for this question.

$$X_f = \underline{\hspace{2cm}}$$

$$X_f = X$$

- Fill in the blanks in the following set so that any controller $u(x) \in C(x)$ will ensure robust constraint satisfaction for system (3). Use the value $\bar{w} = 0.2$ for this question.

$$C(x) := \left\{ u_0 \left| \exists u_1 \left(\begin{array}{c} \dots \\ \dots \\ \dots \end{array} \right) \leq \left[\begin{array}{c|c|c|c|c} \dots & \dots & \dots & \dots & \dots \\ \hline \dots & \dots & \dots & \dots & \dots \\ \hline \dots & \dots & \dots & \dots & \dots \end{array} \right] \begin{pmatrix} u_0 \\ u_1 \\ x \end{pmatrix} \leq \left(\begin{array}{c} \dots \\ \dots \\ \dots \end{array} \right) \right\} \right.$$

Hint: $a[-1, 1] \ominus b[-1, 1] = (a-b)[-1, 1]$ for $a \geq b \geq 0$

This is just two-stage open-loop robust MPC in dense formulation.

$$\left\{ u_0 \mid \exists u_1 - \begin{pmatrix} 17 \\ 48 \\ 27 \\ 96 \\ 1 \\ 1 \end{pmatrix} \leq \begin{bmatrix} 1 & 0 & \frac{1}{2} \\ \frac{1}{2} & 1 & \frac{1}{4} \\ 1 & & 1 \end{bmatrix} \begin{pmatrix} u_0 \\ u_1 \\ x \end{pmatrix} \leq \begin{pmatrix} 17 \\ 48 \\ 27 \\ 96 \\ 1 \\ 1 \end{pmatrix} \right\}$$

4. Will the dynamic system $x^+ = f(x, u^*(x))$ satisfy the constraints $x \in X$ and $u \in U$ where $u^*(x)$ be the robust MPC controller defined above? *Explain your answer.*

- Yes
- No
- Not enough information

Yes. The controller robustly satisfies the constraints of system (3) and we designed this uncertain system to contain the dynamics of the nonlinear system. As a result, the constraints of the nonlinear system are also satisfied.

