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Outline of the lecture

o Classification of control schemes
@ The eigenvalue assignment (EA) problem

» Systems with scalar input - the Ackermann’s formula
o EA for MIMO systems

» Approximate methods
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Control schemes: output feedback

DT nonlinear system

xT = f(x, u)

y = h(x, u)

Output feedback

o y°(k): setpoint

Controller

System

\J

t

@ u(k): control variable

Output feedback: the controller uses the setpoint and a measurement of

the output to compute the control variable
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Control schemes: state feedback
State feedback

——» Controller > System —»

4 x

State feedback: the controller uses the setpoint and a measurement of the
state for computing the control variable

Giancarlo Ferrari Trecate Multivariable control EPFL 4/33




Control schemes: state feedback

State feedback

——» Controller > System —»
4 x

State feedback: the controller uses the setpoint and a measurement of the
state for computing the control variable

Pros

Since y = h(x, u) the output can only contain less information than the
state. Therefore, state feedback usually guarantees better performances

Cons

The state must be measured and this is not always the case. Otherwise
the state must be estimated from measurements of u and y

v
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Control problems

Terminology
@ Regulation: make a desired equilibrium state AS

@ Tracking: make the system output track, according to given criteria,
special classes of setpoints y°

In both problems disturbances must be also attenuated or rejected.
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Control problems

Terminology
@ Regulation: make a desired equilibrium state AS

@ Tracking: make the system output track, according to given criteria,
special classes of setpoints y°

In both problems disturbances must be also attenuated or rejected.

Taxonomy of controllers

e Static: the controller is a static system (e.g. proportional control
u(k) = r(y(k) — y°(k))

@ Dynamic: the controller is a dynamic system (e.g. PID controllers)

Topics that will be covered in this course

Static and dynamic controllers for LTI discrete-time systems
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Stabilization of the origin
Regulation problem

xT = f(x, u)

Design the control law u(k) = k(x(k)) k : R" — R such that the origin of

the closed-loop system
xT = f(x, k(x))

is an AS equilibrium state
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Stabilization of the origin
Regulation problem

xT = f(x, u)

Design the control law u(k) = k(x(k)) k : R" — R such that the origin of
the closed-loop system

+
is an AS equilibrium state X" = f{x, 5(x))

Remarks

@ Several industrial systems are designed to work around a nominal
operation point (X, ) that must be stabilized by the controller

@ Linearization about this point produces an LTI system > ; with state
x — X — stabilisation of X; about the origin often implies
stabilisation of the original system about X

v
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Stabilization of the origin
Regulation problem

xT = f(x, v)

Design the control law u(k) = k(x(k)) k : R" — R such that the origin of
the closed-loop system

+ _
is an AS equilibrium state X" = f{x, 5(x))

Remarks

@ Several industrial systems are designed to work around a nominal
operation point (x, i) that must be stabilized by the controller

@ Linearization about this point produces an LTI system > ; with state
Xx — X — stabilisation of ¥; about the origin often implies
stabilisation of the original system about X

@ Stabilization of the origin is also at the core of the design of
controllers for tracking problems

@ For the sake of simplicity, in most cases we will neglect the presence
of disturbances )
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State-feedback controllers - LTI systems

Multi-input LTI system

xT = Ax+ Bu, x(k) €R", u(k) € R™

Control law - Save hosis ensido, i) = — € xlic)

u(k) = Kx(k), K € R™" to be designed for stabilizing x = 0

Closed-loop system: xT = (A+ BK) x

Eigenvalue Assignment (EA) problem

Compute, if possible, K such that the eigenvalues of A+ BK take
prescribed values (real or in complex conjugate pairs)
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Solution to the EA problem

Theorem
The EA problem can be solved if and only if the LTI system is reachable

v

Review

The system x* = Ax + Bu is reachable if and only if the matrix
M, = [ B|AB|AZB|--- |A”_IB]

has maximal rank.
@ M,: reachability matrix

@ Terminology: the pair (A, B) is reachable

2h Ly \l/
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Solution to the EA problem - single input

Definition
Let u(k) € R. The pair (A, B) is in the canonical controllability form if
[0 1 o .. 0 [ 0]
0 0 1 ... 0 0
A=| + 1 i o | B=|:|.b#0
0 0 0 1 0
| —a —a1 —a -+ —ap-1 | | b |
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Solution to the EA problem - single input

Definition
Let u(k) € R. The pair (A, B) is in the canonical controllability form if
[0 1 o .. 0 [0 ]
0 0 1 ... 0 0
A=| + i i | B=|:|,b#0
0 0 0 1 0
| =@ —a1 —a -+ (—ap-1 | | b

Remarks
e If (A, B) is the canonical controllability form, then M, has maximal

rank by construction
o Let pa(A) be the characteristic polynomial of A. By construction, one

has 4
pa(A) :\6\" + a,,_l)\”_l + -+ a1\ +ag

v
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Solution to the EA problem - single input

@ Structure of the canonical controllability form

X1+ = X
5 =x o .

< shift register storing the last n — 1 states
Xp1 =%

x;7 = a(x) + bu «+ the input acts on x;"

where a(x) = —apx1 —a1x2 — ... — an—1Xn

Idea
If the LTI system is in the canonical controllability form, choose

1 1.
u= [—)(—a(x)) —i—l—)u

this cancels a(x)

such that the auxiliary input & assigns the closed-loop eigenvalues

v
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Solution to the EA problem - single input

Algorithm
Let (A, B) be in canonical controllability form

@ For given desired closed-loop eigenvalues 5\1, 5\2, el Xn, build up the
polynomial

PP = (A=A =X2)- - (A=An) = A" HEm "+ - £G4 5

o Use

1 ~
u =3 (~alx) + 3(x))

where 3(x) = —dox1 — d1x2 — ... — Gp—1Xn-
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Solution to the EA problem - single input

Closed-loop system

+

X; = X2
1
shift register storing the last n — 1 states
X;:;l = Xp
xT = 3(x)

The matrix A of the closed-loop system x* = Ax is in the canonical
controllability form: by construction p?()) is the closed-loop characteristic
polynomial

v

Matrix K (gain matrix)

1 .
u= E(—a(x) +3(x)) =

= %((30 —&o)xa+(a1—d1)x2+ -+ (an—1 — dn_1) xn) = Kx
with K = % [(ao = 50) (81 = 51) 000 (a,,_l = 5,,_1)]
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Solution to the EA problem - single input

How to solve the EA problem if the LTI system is not in the canonical
controllability form ?

=] & = E DA
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Solution to the EA problem -single input

How to solve the EA problem if the LTI system is not in the canonical
controllability form 7

Lemma
If (A, B) is reachable, there is an invertible matrix T such that the
equivalent system

£t =A%+ Bu, A=TAT ', B=TB

where X = Tx, is in the canonical controllability form with(b = 1.
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Solution to the EA problem - single input

How to solve the EA problem if the LTI system is not in the canonical
controllability form 7

Lemma
If (A, B) is reachable, there is an invertible matrix T such that the
equivalent system

£t =A%+ Bu, A=TAT ', B=TB

where X = Tx, is in the canonical controllability form with b = 1.

Computation of T

P l‘c%?)mﬁ?b mJ\dk 0‘@ B>
M =[ B|AB|AB|--- | A" _ m-
M= B|AB|RB|... | Ar _TI\/I }%T‘M”Mf

. A -
L—)feeoﬂ,ahlug ““MC’FCH,(B) "]Zé\ _ Tﬂ.VrTHT/trB
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Solution to the EA problem - single input

Algorithm

Given A, B and the desired closed-loop characteristic polynomial
PP =243, 02"+ 5N+ 5

@ compute M, and verify that (A, B) is reachable
© compute

AN = A"+ 3, A" agh Hag
Q build® A, B and M,. Compute T = M, M !
O build® K = [(a0 — d) (a1 —31) - (an-1— dn_1)]
© compute K = KT an set u= Kx

2A and B are in the canonical controllability form with b = 1. For the
computation it is enough to know pa(X).
bController design in the coordinates X.
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Ackermann’s formula
In the previous algorithm one can'avoid the use of X coordinates and
design directly the controller K as a function of A and B.

Theorem
Let (A, B) be a reachable pair and let

PP(A) = A"+ 5,1\ 4+ BN+ &

be the desired closed-loop polynomial. Then, the controller v = Kx such
that the characteristic polynomial of A+ BK is pP()) is given by

K=-[0 0 -~ 1]M(4) (1)
Dveachshilbs My of CQ‘B)
Equation (1) is called the Ackermann'’s formula ]
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Proof of the Ackermann's formula

Being A in in the canonical controllability form, one can verify that the

first row of Al, 1 < i< nis composed by zero entries except the entry in
position (1,7 + 1) that is'1

0
0
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Proof of the Ackermann’s form cotff. of e chonotarolly
Since from yley-Hamilton theorem one has Pl of A
A"+ an 1AL 44 a1 A+ agl = 0, it follows that

pP(A) = pP(A) — 0= A" +8, 1 A" L + ... £ 51 A+ 5l

_An - an_llz\nil ;’ R 2 31/2\ ﬂ: 80/ =
(5n71 - anfl)AAn_1 + -+ (50 - 30)/

(G0 —a0) (G1—a1) (d2—a2) -+ (8n—1—an-1)
pP(A) =

and therefore the controller K we have computed before is given by

K=-[10 - 0]p°(A)
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Proof of the Ackermann's formula

Since A = TAT L, T = M,Mr_l, K = KT one has > €.¢ A :T"a‘r:mz"

K=-[1 0 .- 0]p°(A)T = (2)
=—[1 0 - 0] TPP(A)T T = (3)
=—[1 0 - 0] MM p"(A) (4)
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Proof of the Ackermann's formula

Since A = TAT L, T = M,Mfl, K = KT one has

K=-[10 0] pP(A) (2)
=-[10 0] TPP(A)T T = (3)
=-[10 0] MM, *pP(A) (4)
For getting rid of M,, we observe that, since A and B are in canonical
controllability form, one has
0 0 0 0 1
0 0 0 1 x
M= @ Do
0 0 1 X X
0 1 x X X
1 x x X X
Therefore, — [1 0 )M =-1[0 0 1].
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Example

Problem
+
X =x1+x2+u
+
X2 = u

Compute a state-feedback controller such that the closed-loop system has
all eigenvalues equal to %

Giancarlo Ferrari Trecate Multivariable control EPFL 19/33




Example

Problem
xm = x +
1 =x1t+x+u
aF
Xy =u

Compute a state-feedback controller such that the closed-loop system has
all eigenvalues equal to %

Desired closed-loop characteristic polynomial

PPN = () — %)2 =N+ (-1)A+
=~

a1

g1<4>\ —

Computation of M,

A—[é (1)] B—E]:H\/I,—[BAB]—B g}

M, is full rank = EA problem can be solved
EPFL  19/33



Example

Computation of pa())

-é\N o1 ]
Build A, B, M, and T ’Lwo -e,
/>

A-{omt] &=f3) = -18148]-] }]
|

Build K

K=[(ao—3%) (aa—a)]=[0-% -1+1]=[-1 0]
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Example

Build K
K=RT=[-}
Check the result B
A+ BK = [ 8, ﬂ
~8 8

Eigenvalues of A+ BK: A1 = X\ = %

[} = =
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Example

Using Ackermann’s formula

K=-[0 1]M1p°(A)

e gt
K=—-|01 0 71‘ —[-1 1
[ ]1 _1 [8 8]
8 8
4h L5 _‘L_
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Example : Single-axis satellite attitude control

Attitude control = proper orientation of the satellite antenna with respect
to earth.

reference

Inertial /\ 0
— 3

16 = Mc + Mp
| = moment of inertia of the satellite (about the mass center)
M¢c = control torque applied by thrusters
Mp = disturbance torque

0 = angle of satellite
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Example : Single-axis satellite attitude control

Attitude control = proper orientation of the satellite antenna with respect
to earth.

Inertial ‘/\ e
— .

reference

@ Model with normalized inputs:

u—MC W—MD
- o
ézu—i—w

Giancarlo Ferrari Trecate Multivariable control EPFL 23/33



State-space models

@ CT LTI models x; =0, x» = 0

l=lo ol Rl [R)ee 2]

y==90

I
=
o

| — |
5 X
| S

Double integrator dynamics
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State-space models

@ CT LTI models x; =0, x» = 0

l=lo ol Rl [R)ee 2]

y=1=0

I
—_
=
o
2
| — |
5 X
| S

Double integrator dynamics

@ DT LTI model (exact discretization, sampling time T > 0)

0 TR [F e

N——
A B
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Control design
Goal

Design u = Kx such that the closed-loop eigenvalues are z; , = 0.8 £ j0.25

=] & = E DA
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Control design

Goal
Design u = Kx such that the closed-loop eigenvalues are z; , = 0.8 £ j0.25 J

@ Desired closed-loop polynomial

PPN =(A—z2)(A—2) =X —1.6)A+07

@ Closed-loop polynomial for u= [ 1 k2 | x

vov=aaA[3 - [[3 ][5 ]im m1]-

T2 T2
N+ (—Tﬁg—751—2>>\—751+ Tky+1

Idea for design: equate the coefficients of pX and p? = simple equations for
n = 1,2 (even easier than using Ackermann's formula)
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Control design

Equating the coefficients of the two polynomials for T = 0.1

~Tho— Dk1—2=-16 k1= —% =10
— k14 Tha+1=0 T V= 035 -
2y + Tha+1=0.7 ho =98 = 35

o
w?‘:li-n
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Control design

Equating the coefficients of the two polynomials for T = 0.1

—|e
N[ =

~Tho— Dr1—2=-16 k1= —% =10
— ki + Tha+1=0 T ko= 03—
K1+ Tho+1=07 Ky =——5>=-35
Same results through Ackermann’s formula
@ Matlab code
T =0.1
=1 T;o01],B=(%; T

= [0.8+1i%0.25 ; 0.8-1%x0.25]
-‘acker(A, B, p)

v

o~Kx =P U=gio

w

= T >
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Simulations

Inertial /\ 7

reference
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Eigenvalue assignment for'MIMO systems

Problems
o Ifim > 1, there is no Ackermann’s formula

o Possible to find a change of variables X = Tx such that Ap and BQ
are in a suitable " canonical form” simplifying the computation of K
(and then K) — Hard to compute T

not covered in this class

In MatLab: K = —-place (A, B, p)
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Eigenvalue assignment for MIMO systems

Alternative approach

@ Compute the desired closed-loop characteristic polynomial
PP ="+ )"+ - 1@ @

@ Compute the characteristic polynomial pX(\) of A + BK, where

entries of Ky - Ky
K=1 : .
Kmi - Kon
are free parameters
@ Choose Kjj, i=1,...,m, j=1,...,nso as to make each coefficient

of pX(\) equal to the corresponding coefficient of pP(\)

— Solve a system of nonlinear equations (can be difficult)
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Simplified methods for MIMO systems

Next:( two simplified algorithms - but they cannot be always used
Method 1 : feedback on a scalar channel

xtT=Ax+Bu B= [ by ‘ b, ‘ ‘bm ] € R™xm
Assumption : system reachable from a single input

e Can be uy, without loss of generality, i.e. (A, b1) is reachable.

Idea: use only uy for assigning the eigenvalues.
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Simplified methods for MIMO systems

Next: two simplified algorithms - but they cannot be always used
Method 1 : feedback on a scalar channel

xT = Ax+ Bu B:[bl‘bg‘--- ‘bm]ER”X"’

Assumption : system reachable from a single input
@ Can be uy, without loss of generality, i.e. (A, by) is reachable.

Idea: use only uy for assigning the eigenvalues.
1

0
@ Set u(k) = Kiv(k), Ki= | . | € R™ where v(k) € R is an

auxiliary input.

Closed-loop system
xt = Ax + BKiv = Ax + biv

@ Set v(k) = Kax(k) and use Ackermann’s formula for assigning the
eigenvalues of

(A -+ blKg) = (A + BKlKg)
v
=T o




Simplified methods for MIMO systems
Feedback gain

K1 K2 Kn
0 O 0
K=K K = . . .
0 0 0

=] & = E DA
Giancarlo Ferrari Trecate Multivariable control




Simplified methods for MIMO systems

Feedback gain

K1 Ko - Kn
0 0 0
K =K1Ky = :
0 0 0

Drawbacks

@ Only a single input is used, all others are set to zero
Can be a nonsense if inputs are physical variables that cannot be set to
zero
o If the system is reachable from multiple scalar inputs, the choice of
the channel is arbitrary
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Simplified methods for MIMO system
Method 2 -"Probabilistic approach
@ Parametrize the control law as

u(k) = Kax(k) + Kav(k) Ky € R™" Kz € R™*!

where v(k) € R is an auxiliary input
Partial closed-loop system
XJr = (A I BKQ)X T BK3V
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Simplified methods for MIMO system
Method 2 - Probabilistic approach

@ Parametrize the control law as
u(k) = Kox(k) + Kav(k) Ky € R™" Kz € R™*!

where v(k) € R is an auxiliary input
Partial closed-loop system
XJr = (A I BK2)X T BK3V
Lemma
By choosing randomly K> and K3, the pair (A + BK>, BK3) is reachable
with probability one

@ Use Ackermann's formula for designing Ki, such that the closed-loop
system
X+ = (A + BK2 + BK3K1)X

has the desired eigenvalues.

v
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Simplified methods for MIMO systems
Feedback gain

K = Ky + K3K1

=] & = E DA
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Simplified methods for MIMO systems

Feedback gain
K = Ky + K3K1

Drawbacks
@ Same problems as in method 1

@ The random choice of K, K3 is independent of the system physics
and can be meaningless
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