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Linear Quadratic Gaussian (LQG) control
Combination of LQ control with a (steady-state) KF
Problem
The system is stochastic. What “LQ” means?

System:
x+ = Ax + Bu + w w ⇠ WGN(0,W ) W � 0

y = Cx + v v ⇠ WGN(0,V ) V > 0

x0 ⇠ N(x̄0,⌃0)
x0,wk , vj uncorrelated

LQ cost

J = lim
N!+1

1

N
E
h
⌃N�1
k=0 x

T
k Qxk + uTk Ruk

i

to be minimized without measuring xk

Idea
Under the assumption guaranteeing stability of IH-LQ and steady-state
KF, one can use a “separation principle” for control design
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Algorithm

1) Use yk and uk for computing x̂k+1|k using the stationary Kalman
predictor gain L̄

2) Compute the optimal control law (gain K̄ )

3) Apply the control law

uk+1 = �K̄ x̂k+1|k

Main results
The closed-loop system is AS with eigenvalues

Spec(A� BK̄ ) [ Spec(A� L̄C )

The cost J in the previous slide is minimized
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Extended Kalman predictor (known as EKF-Extended
Kalman Filter)

Nonlinear system

⌃NL :

8
><

>:

xk+1 = f (xk , uk) + wk

yk = g(xk) + vk
x0 ⇠ N(x̃0,⌃0)

Assumptions:

f , g are di↵erentiable with continuity

wk ⇠ WGN(0,W ), vk ⇠ WGN(0,V ), x0, vi , wj independent, 8i , j
Problem: how to account for the NL dynamics in KF?

Giancarlo Ferrari Trecate Multivariable Control EPFL

↳E

ENM
Ye EIRP



First (naive) solution: linearized Kalman predictor
Let x̄k , ȳk be the states/outputs in a noiseless nominal experiment

x̄k+1 = f (x̄k , uk)

ȳk = g(x̄k)

x̄0 = x̃0

Let �xk = xk � x̄k , �yk = yk � ȳk and linearize ⌃NL at each time k about
x̄k and ȳk

���x̄k+1 + �xk+1 '⇠⇠⇠⇠⇠f (x̄k , uk) +

Ākz }| {
@f (x , u)

@x

����
x̄k ,uk

· �xk + wk

��̄yk + �yk '���g(x̄k) +
@g(x)

@x

����
x̄k| {z }

C̄k

· �xk + vk

Then:

⌃L :

8
><

>:

�xk+1 = Āk�xk + wk

�yk = C̄k�xk + vk
�x0 ⇠ N(0,⌃0)
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Idea
Design a KF for ⌃L

KF for the time-varying system ⌃L

Init. �x̂0|�1 = 0, ⌃̄0|�1 = ⌃0 (statistics of �x0)

Filtering step
�x̂k|k = �x̂k|k�1 + L̄k|k(�yk � C̄k�x̂k|k�1) (1)

L̄k|k = . . . , ⌃̄k|k = . . . usual KF updates based on Āk and C̄k

Remark: Since �x̂k|k = x̂k|k � x̄k and �x̂k|k�1 = x̂k|k�1 � x̄k , (1) gives

x̂k|k ���̄xk = x̂k|k�1 ���̄xk + L̄k|k

 
yk �

✓
g(x̄k) +

@g(x)

@x

����
x̄k

�x̂k|k�1

| {z }
⇡g(x̂k|k�1)

◆!

x̂k|k ⇡ x̂k|k�1 + L̄k|k
�
yk � g(x̂k|k�1)

�
(⇤)
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Prediction step
�x̂k+1|k = Āk�x̂k|k (2)

⌃̄k+1|k = . . . usual KF update based on Āk

Remark: (2) gives

x̂k+1|k � x̄k+1|{z}
f (x̄k ,uk )

= Āk
�
x̂k|k � x̄k

�

x̂k+1|k = f (x̄k , uk) +
@f (x , u)

@x

����
x̄k ,uk

�
x̂k|k � x̄k

�

| {z }
⇡f (x̂k|k ,uk)

(⇤⇤)

Using (⇤) and (⇤⇤), we introduce the following filter:
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Linearized KF

Init. x̂0|�1 2 Rn,⌃0|�1 2 Rn⇥n (statistics of x0)

Filtering step
x̂k|k = x̂k|k�1 + L̄k|k(yk � g(x̂k|k�1))

L̄k|k = ⌃̄k|k�1C̄
T
k (C̄k⌃̄k|k�1C̄

T
k + V )�1

⌃̄k|k = ⌃̄k|k�1 � ⌃̄k|k�1C̄
T
k (C̄k⌃̄k|k�1C̄

T
k + V )�1C̄k⌃̄k|k�1

Prediction step

x̂k+1|k = f (x̂k|k , uk)

⌃̄k+1|k = Āk⌃̄k|k Ā
T
k +W
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Pros

L̄k|k , ⌃̄k|k can be computed in advance as usual

Cons
xk can be very di↵erent from x̄k because of noise
,! the linearized KF utilizes the wrong model for computing L̄k|k )
performance can be poor

Next: overcome this problem
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Extended Kalman predictor (EKF)
Idea

Use the previous algorithm with L̄k replaced by the gain L̂k obtained by
linearizing the system about x̂k (the most recent estimate)

Formulae

Âk =
@f (x , u)

@x

����
x̂k�1|k�1,uk

Ĉk =
@g(x)

@x

����
x̂k|k�1

Replace Āk with Âk and C̄k with Ĉk in the linearized KF

Why x̂k|k�1 and not x̂k|k when computing Ĉk?

For computing x̂k|k one needs L̂k|k and hence Ĉk . If Ĉk depends upon
x̂k|k there is a circular dependence

Remark
The EKF is not optimal. . . but, often, it is OK in applications.
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Estimation of unknown parameters with the EKF
System

xk+1 = f (xk , uk ,↵) + wk

yk = g(xk ,↵) + vk

↵ 2 R: unknown parameter

Trick

1) Extend the state with the fictitious state

↵k+1 = ↵k (⇤)

Set x̃ =


x
↵

�
and obtain the extended system

⌃̃ :

(
x̃k+1 = f̃ (x̃k , uk) + w̃k

yk = g̃(x̃k) + vk

f̃ , g̃ , w̃k easily obtained from the original system and (⇤)

2) Apply EKF to ⌃̃ to estimate x ,↵
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Remark

Even if f and g are linear in x and u, f̃ and g̃ are not

Example
8
><

>:
x+ =

"
0.1 ↵

0 0.2

#
x = f (x ,↵)

y = x1

Extended state equations

x+1 = 0.1x1 + ↵x2
#

nonlinear!

x+2 = 0.2x2

↵+ = ↵
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Example - di↵erence between linearized and extended KF

xk+1 = x2k + wk wk ⇠ WGN(0, 0.1)

yk = x3k + vk vk ⇠ WGN(0, 0.2)

x0 ⇠ N(1, 1)

Nominal state xk = x̄ = 1, 8k � 0
Compute the linearized and extended KF

Linearized KF

Āk =
@x2k
@xk

����
xk=x̄

= 2 xk |xk=x̄ = 2

C̄k =
@x3k
@xk

����
xk=x̄

= 3 x2k
��
xk=x̄

= 3
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Linearized KF (check @home)

Filtering

x̂k|k = x̂k|k�1 + L̄k|k(yk � g(x̂k|k�1))

L̄k|k = ⌃̄k|k�1 · 3#
C̄k

( 9
#

C̄k C̄
T
k

⌃̄k|k�1 + 0.2
#
V

)�1

⌃̄k|k = ⌃̄k|k�1 � ⌃̄2
k|k�1 · 9

#
C̄k C̄

T
k

( 9
#

C̄k C̄
T
k

⌃̄k|k�1 + 0.2)�1

Prediction

x̂k+1|k = x̂2k|k

⌃̄k+1|k = 4
#

Āk Ā
T
k

⌃̄k|k + 0.1
#
W
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EKF

Âk =
@x2k
@xk

����
xk=x̂k�1|k�1

= 2x̂k�1|k�1

Ĉk =
@x3k
@xk

����
xk=x̂k|k�1

= 3x̂2k|k�1

,! replace these matrices in the previous formulae

• Âk and Ĉk are time-varying while Āk and C̄k are not!
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1

Ns

NsX

k=1

|x̂k|k � xk | = 0.3051
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1

Ns

NsX

k=1

|x̂k|k � x̂k | = 0.0866
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Example: Predator-prey system1 (check @home)
Bio-system:

Prey population: xk,1

Predator population: xk,2

Model:
xk+1,1 =


1 +�t

✓
1�

xk,2
c2

◆�
xk,1 + wk,1

xk+1,2 =


1��t

✓
1�

xk,1
c1

◆�
xk,2 + wk,2

where �t is the time step, c1 and c2 are constant model parameters and⇥ w1,k
w2,k

⇤
⇠ WGN(0,W ).

Objective: estimate the predator and prey populations based on noisy
measurements of the total population

yk = xk,1 + xk,2 + vk
where vk ⇠ WGN(0,V )

1
N. Kovvali, M. Banavar, A. Spanias. An Introduction to Kalman Filtering with MATLAB Examples.
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Example: Predator-prey system
! There is an interaction between the two populations

! When there is an abundance of preys, the predator population increases
! This increase in predators drives the prey population down
! With a scarcity of preys, the predator population is forced to decrease
! The decrease in predators then results in an increase of the number of preys
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Example: Predator-prey system

xk+1 =


xk+1,1

xk+1,2

�
= f

✓
xk,1
xk,2

�◆
+


wk,1

wk,2

�

yk = C


xk,1
xk,2

�
+ vk

This state-space model is non linear and Gaussian ! use EKF for state
estimation
Extended KF:

Âk =

2

4
1 +�t

⇣
1� xk�1|k�1,2

c2

⌘
��t

xk�1|k�1,1

c2

�t
xk�1|k�1,2

c1
1 +�t

⇣
1� xk�1|k�1,1

c1

⌘

3

5
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Example: Predator-Prey system
Simulations:

�t = 0.01, c1 = 300, c2 = 200, W = [ 1 0
0 1 ] and V = 100

Initial populations: x0 = [ 400100 ]
Initial condition for estimator: x̂0|0 ⇠ N (x0, [ 100 0

0 100 ])
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Example: Predator-Prey system

The EKF is able to
track the predator-prey
dynamics with good ac-
curacy
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