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Linear Quadratic Gaussian (LQG) control
Combination of LQ control with a (steady-state) KF

Problem
The system is stochastic. What “LQ"” means?
@ System:
xT=Ax+Bu+w w ~ WGN(0, W) W >0
y=C+v v ~ WGN(0, V) V>0

Xo ~ N()_(o, ZQ)
@ Xp, Wk, vj uncorrelated
LQ cost
.1 N—-1,T T
J= lim SE (R3] @i+ uf Ruy

to be minimized without measuring xx

Idea

Under the assumption guaranteeing stability of IH-LQ and steady-state
KF, one can use a “separation principle” for control design
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Algorithm

1) Use yx and uj for computing 11| using the stationary Kalman
predictor gain L

2) Compute the optimal control law (gain K)

3) Apply the control law

Ukt1 = —KXip 1)k
Main results

@ The closed-loop system is AS with eigenvalues
Spec(A — BK) U Spec(A — LC)

@ The cost J in the previous slide is minimized
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Extended Kalman predictor (known as EKF-Extended
Kalman Filter)

Nonlinear system

X1 = (X, u) + wy
TS vk = g(xk) + vk
Xo ~ N()?o7 Zo)

Assumptions:
o f, g are differentiable with continuity
o wy ~ WGN(0, W), v, ~ WGN(0, V), xq, vi, wj independent, Vi,

Problem: how to account for the NL dynamics in KF?
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First (naive) solution: linearized Kalman predictor
Let Xk, yk be the states/outputs in a noiseless nominal experiment
X1 = f(Xk, uk)
k= g(%)
X0 = Xo

Let dxx = xx — Xk, OVk = Vi — ¥k and linearize X, at each time k about

X and i Ak
_ _ of (x,u
%+5Xk+1ﬁw+f%<) - OXy + wy
Xic, Uk
_ _, 9g(x)
yf"‘@’k—%ﬁ- e )_(k'5Xk+Vk
—_————
Ci
Then: OXkr1 = Ardxic + wy

> S 0y = Crdxpe + v
(SXO ~ N(O, ZO)
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Idea
@ Design a KF for ¥,

KF for the time-varying system ¥ ;
Init. 0%—1 = 0, io|_1 = Y (statistics of dxp)
o Filtering step _ _
0%k = 0Rujk—1 + Lk (Oyk — CkORyjk—1) (1)
Zk|k = coog ik|k = ... usual KF updates based on Ay and Cj

Remark: Since 6)?k|k = )?k\k — Xk and 5)?k|k71 = )?k\kfl — Xk, (1) giVGS

" _ . _ - _ og(x ~
Xk|k —%2 Xk|k—1 —}’4+ Lyik (ﬂ - (g(xk) + %E( ) _ OXk|k—1 ))
Xk
~g(Xk|k—1)
Rtk = Rifk—1 + Ligk (v — 8(Rajk-1)) (*)
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@ Prediction step
0Kkt 1)k = AkOXk|k

ik+1\k = ... usual KF update based on Ay

Remark: (2) gives

Ririlk — k1 = A (Rir — %)
—~—
f()_(/ﬂuk)
f'
9ftx, u) (8X7 ) (Ruk — Xx)
X X, Uk

Riyipk = (X, uk) +

~f (Rkpiouk)

Using () and (), we introduce the following filter:
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Linearized KF
Init. Kp—1 € R", Xoj_1 € R™" (statistics of xo)
o Filtering step
Rk = Ruk—1 + Lie(ye — 8(Rkjk-1))
Lk = Zuk—1Gd (GeZpp1 G + V)71
ik = Zaphe1 — Zuph1 G (CeZpu—1 Gl + V) CeZput

@ Prediction step

>A<k+1|k = f(>A<k|k= u)
ik+1|k = /Z\kik“(/é_\z- ate W
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Pros

Zk|k, ik|k can be computed in advance as usual

Cons

Xk can be very different from X because of noise

— the linearized KF utilizes the wrong model for computing [k|k =
performance can be poor

Next: overcome this problem
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Extended Kalman predictor (EKF)

Idea

Use the previous algorithm with L, replaced by the gain [, obtained by
linearizing the system about X, (the most recent estimate)

Formulae
Of (x, u)
0x

. o 0,

Ri—1)k—1:Uk Rijk—1

Replace A, with A, and C, with €y in the linearized KF

Why Xy k-1 and not Xy, when computing 6;(?
@ For computing X, one needs [k|k and hence Cy. If € depends upon
Xk|k there is a circular dependence
Remark

The EKF is not optimal. .. but, often, it is OK in applications.
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Estimation of unknown parameters with the EKF
System

X1 = F(xk, Uk, @) + wy
Yk = g(kaa) + Vi
a € R: unknown parameter
Trick
1) Extend the state with the fictitious state
Q41 = Ol (O)

Set X = [ 2 ] and obtain the extended system

s {xkﬂ = F (%, uk) + Wi
Yk = E(%) + vk
f,&, W easily obtained from the original system and (CJ)
2) Apply EKF to ¥ to estimate x, &

o
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Remark

Even if f and g are linear in x and u, f and & are not

Example

y=x1

Extended state equations

X1+ =0.1x1 + ax
nonlinear!
x;' = 0.2x

OL+:OZ
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Example - difference between linearized and extended KF

Xk+1 = x,f + wy wy ~ WGN(0,0.1)
Yk = Xp + Vi v ~ WGN(0,0.2)
xo ~ N(1,1)

@ Nominal state x, =X =1,Yk >0
Compute the linearized and extended KF

Linearized KF

= Ox?
A= =k =2 —
= B |y S
_ ox3
Co=2k|  =3x¢| =3
an X=X X=X
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Linearized KF (check @home)
Filtering
Rtk = Rigk—1 + Lk (v — 8(Rujk—1))
Lk = Zher - 3( 9 Tye_q +02)7 0
klk = k|k—1 _¢( 9 Lijk-1 i)
S &l v
Tilk = Zik—1 — Thjpt ? ( ‘-j Tik—1+0.2)7"
&l .l
Prediction
A _ 9
Xk+1lk = Xk|k
Stk = i‘ ik + Oil
AAT w
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EKF

A Ix?2
k A
Ax = I, = 2X_1)k—1
K Da=Re1jk—1
A ox3
_ OX _ o

Xk =Rk k—1

— replace these matrices in the previous formulae

) Ak and @ are time-varying while Ay and C, are not!
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Using linearized Kalman filter
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Using Kalman filter
T T
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Example: Predator-prey system! (check @home)
Bio-system:

@ Prey population: Xy 1

@ Predator population: x>

Model:

X
Xk4+1,1 = [1 + At (1 - g;)] XK1+ Wk 1

X
X412 = [1 — At (1 - 211)] Xk2 + W2

where At is the time step, ¢; and ¢, are constant model parameters and
[wc] ~ WGN(0, W).

Objective: estimate the predator and prey populations based on noisy
measurements of the total population

Yk = X1 + X2 + Vi
where v, ~ WGN(0, V)

1N. Kowvali, M. Banavar, A. Spanias. An Introduction to Kalman Filtering with MATLAB Examples.
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Example: Predator-prey system

— There is an interaction between the two populations

— e
predators > > prey
increase a > P decrease
> & °
» > »
a a
a a
a & > >
> o »
> > >
e a >
> o > e
L] > @ a ) »
a e - -, > [ »
| | 4
a
.» -
a [ ]
prey a > » predators
increase e g > decrease

— When there is an abundance of preys, the predator population increases

— This increase in predators drives the prey population down

— With a scarcity of preys, the predator population is forced to decrease

— The decrease in predators then results in an increase of the number of preys
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Example: Predator-prey system
_ Xkt Xk,1 Wik 1
=[] = ([l + )

This state-space model is non linear and Gaussian — use EKF for state
estimation

Extended KF:

1+ At (1 o Xk71|k71,2) _Atxk71|k71,1

C2 (o]

Ath—1|k—1,2 1+ At (1 _ Xk—1|k—1,1>

Cc1 C1

Ay —
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Example: Predator-Prey system

Simulations:
o At=0.01, ¢g =300, c =200, W =[}9] and V =100
o Initial populations: xp = [199

o Initial condition for estimator: X0 ~ N (xo, [13° 130])

700 T T T
actual preys
- - —estimated preys
| actual predators
600 - - estimated predators

population

0 5 10 15 20
time
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Example: Predator-Prey system

400 I:.}(_’t_u.\l ) II
~ 300
S The EKF is able to
g track the predator-prey
£ 200 dynamics with good ac-
£ curacy

100/

100 200 300 400 500 600

prey population
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