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Linear quadratic Gaussian control and the extended Kalman filter
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Linear Quadratic Gaussian (LQG) control
Combination of LQ control with a (steady-state) KF

Problem

The system is stochastic. What “LQ” means?
System:

x+ = Ax + Bu + w w ∼ WGN(0,W ) W ≥ 0

y = Cx + v v ∼ WGN(0,V ) V > 0

x0 ∼ N(x̄0,Σ0)
x0,wk , vj uncorrelated

LQ cost

J = lim
N→+∞

1

N
E
[︁
ΣN−1
k=0 x

T
k Qxk + uTk Ruk

]︁
to be minimized without measuring xk

Idea

Under the assumption guaranteeing stability of IH-LQ and steady-state
KF, one can use a “separation principle” for control design
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Algorithm

1) Use yk and uk for computing x̂k+1|k using the stationary Kalman

predictor gain L̄

2) Compute the optimal control law (gain K̄ )

3) Apply the control law

uk+1 = −K̄ x̂k+1|k

Main results

The closed-loop system is AS with eigenvalues

Spec(A− BK̄ ) ∪ Spec(A− L̄C )

The cost J in the previous slide is minimized
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Extended Kalman predictor (known as EKF-Extended
Kalman Filter)

Nonlinear system

ΣNL :

⎧⎪⎨⎪⎩
xk+1 = f (xk , uk) + wk

yk = g(xk) + vk

x0 ∼ N(x̃0,Σ0)

Assumptions:

f , g are differentiable with continuity

wk ∼ WGN(0,W ), vk ∼ WGN(0,V ), x0, vi , wj independent, ∀i , j
Problem: how to account for the NL dynamics in KF?
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First (naive) solution: linearized Kalman predictor
Let x̄k , ȳk be the states/outputs in a noiseless nominal experiment

x̄k+1 = f (x̄k , uk)

ȳk = g(x̄k)

x̄0 = x̃0

Let 𝛿xk = xk − x̄k , 𝛿yk = yk − ȳk and linearize ΣNL at each time k about
x̄k and ȳk

���x̄k+1 + 𝛿xk+1 ≃�����f (x̄k , uk) +

Āk⏞  ⏟  
𝜕f (x , u)

𝜕x

⃒⃒⃒⃒
x̄k ,uk

· 𝛿xk + wk

��̄yk + 𝛿yk ≃���g(x̄k) +
𝜕g(x)

𝜕x

⃒⃒⃒⃒
x̄k⏟  ⏞  

C̄k

· 𝛿xk + vk

Then:

ΣL :

⎧⎪⎨⎪⎩
𝛿xk+1 = Āk𝛿xk + wk

𝛿yk = C̄k𝛿xk + vk

𝛿x0 ∼ N(0,Σ0)
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Idea

Design a KF for ΣL

KF for the time-varying system ΣL

Init. 𝛿x̂0|−1 = 0, Σ̄0|−1 = Σ0 (statistics of 𝛿x0)

Filtering step
𝛿x̂k|k = 𝛿x̂k|k−1 + L̄k|k(𝛿yk − C̄k𝛿x̂k|k−1) (1)

L̄k|k = . . . , Σ̄k|k = . . . usual KF updates based on Āk and C̄k

Remark: Since 𝛿x̂k|k = x̂k|k − x̄k and 𝛿x̂k|k−1 = x̂k|k−1 − x̄k , (1) gives

x̂k|k −��̄xk = x̂k|k−1 −��̄xk + L̄k|k

(︃
yk −

(︂
g(x̄k) +

𝜕g(x)

𝜕x

⃒⃒⃒⃒
x̄k

𝛿x̂k|k−1⏟  ⏞  
≈g(x̂k|k−1)

)︂)︃

x̂k|k ≈ x̂k|k−1 + L̄k|k
(︀
yk − g(x̂k|k−1)

)︀
(*)
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Prediction step
𝛿x̂k+1|k = Āk𝛿x̂k|k (2)

Σ̄k+1|k = . . . usual KF update based on Āk

Remark: (2) gives

x̂k+1|k − x̄k+1⏟ ⏞ 
f (x̄k ,uk )

= Āk

(︀
x̂k|k − x̄k

)︀
x̂k+1|k = f (x̄k , uk) +

𝜕f (x , u)

𝜕x

⃒⃒⃒⃒
x̄k ,uk

(︀
x̂k|k − x̄k

)︀
⏟  ⏞  

≈f (x̂k|k ,uk)

(**)

Using (*) and (**), we introduce the following filter:
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Linearized KF

Init. x̂0|−1 ∈ Rn,Σ0|−1 ∈ Rn×n (statistics of x0)

Filtering step
x̂k|k = x̂k|k−1 + L̄k|k(yk − g(x̂k|k−1))

L̄k|k = Σ̄k|k−1C̄
T
k (C̄kΣ̄k|k−1C̄

T
k + V )−1

Σ̄k|k = Σ̄k|k−1 − Σ̄k|k−1C̄
T
k (C̄kΣ̄k|k−1C̄

T
k + V )−1C̄kΣ̄k|k−1

Prediction step

x̂k+1|k = f (x̂k|k , uk)

Σ̄k+1|k = ĀkΣ̄k|k Ā
T
k +W
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Pros

L̄k|k , Σ̄k|k can be computed in advance as usual

Cons

xk can be very different from x̄k because of noise
→˓ the linearized KF utilizes the wrong model for computing L̄k|k ⇒
performance can be poor

Next: overcome this problem
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Extended Kalman predictor (EKF)

Idea

Use the previous algorithm with L̄k replaced by the gain L̂k obtained by
linearizing the system about x̂k (the most recent estimate)

Formulae

Âk =
𝜕f (x , u)

𝜕x

⃒⃒⃒⃒
x̂k−1|k−1,uk

Ĉk =
𝜕g(x)

𝜕x

⃒⃒⃒⃒
x̂k|k−1

Replace Āk with Âk and C̄k with Ĉk in the linearized KF

Why x̂k|k−1 and not x̂k|k when computing Ĉk?

For computing x̂k|k one needs L̂k|k and hence Ĉk . If Ĉk depends upon
x̂k|k there is a circular dependence

Remark

The EKF is not optimal. . . but, often, it is OK in applications.
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Estimation of unknown parameters with the EKF
System

xk+1 = f (xk , uk , 𝛼) + wk

yk = g(xk , 𝛼) + vk

𝛼 ∈ R: unknown parameter

Trick

1) Extend the state with the fictitious state

𝛼k+1 = 𝛼k (□)

Set x̃ =

[︂
x
𝛼

]︂
and obtain the extended system

Σ̃ :

{︃
x̃k+1 = f̃ (x̃k , uk) + w̃k

yk = g̃(x̃k) + vk

f̃ , g̃ , w̃k easily obtained from the original system and (□)

2) Apply EKF to Σ̃ to estimate x , 𝛼
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Remark

Even if f and g are linear in x and u, f̃ and g̃ are not

Example ⎧⎪⎨⎪⎩x+ =

[︃
0.1 𝛼

0 0.2

]︃
x = f (x , 𝛼)

y = x1

Extended state equations

x+1 = 0.1x1 + 𝛼x2
↓

nonlinear!

x+2 = 0.2x2

𝛼+ = 𝛼
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Example - difference between linearized and extended KF

xk+1 = x2k + wk wk ∼ WGN(0, 0.1)

yk = x3k + vk vk ∼ WGN(0, 0.2)

x0 ∼ N(1, 1)

Nominal state xk = x̄ = 1,∀k ≥ 0
Compute the linearized and extended KF

Linearized KF

Āk =
𝜕x2k
𝜕xk

⃒⃒⃒⃒
xk=x̄

= 2 xk |xk=x̄ = 2

C̄k =
𝜕x3k
𝜕xk

⃒⃒⃒⃒
xk=x̄

= 3 x2k
⃒⃒
xk=x̄

= 3
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Linearized KF (check @home)

Filtering

x̂k|k = x̂k|k−1 + L̄k|k(yk − g(x̂k|k−1))

L̄k|k = Σ̄k|k−1 · 3↓
C̄k

( 9
↓

C̄k C̄
T
k

Σ̄k|k−1 + 0.2
↓
V

)−1

Σ̄k|k = Σ̄k|k−1 − Σ̄2
k|k−1 · 9

↓
C̄k C̄

T
k

( 9
↓

C̄k C̄
T
k

Σ̄k|k−1 + 0.2)−1

Prediction

x̂k+1|k = x̂2k|k

Σ̄k+1|k = 4
↓

Āk Ā
T
k

Σ̄k|k + 0.1
↓
W
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EKF

Âk =
𝜕x2k
𝜕xk

⃒⃒⃒⃒
xk=x̂k−1|k−1

= 2x̂k−1|k−1

Ĉk =
𝜕x3k
𝜕xk

⃒⃒⃒⃒
xk=x̂k|k−1

= 3x̂2k|k−1

→˓ replace these matrices in the previous formulae

∙ Âk and Ĉk are time-varying while Āk and C̄k are not!
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1

Ns

Ns∑︁
k=1

|x̂k|k − xk | = 0.3051

Giancarlo Ferrari Trecate Multivariable Control EPFL



1

Ns

Ns∑︁
k=1

|x̂k|k − xk | = 0.0866
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Example: Predator-prey system1 (check @home)

Bio-system:

Prey population: xk,1

Predator population: xk,2

Model:

xk+1,1 =

[︂
1 + Δt

(︂
1−

xk,2
c2

)︂]︂
xk,1 + wk,1

xk+1,2 =

[︂
1−Δt

(︂
1−

xk,1
c1

)︂]︂
xk,2 + wk,2

where Δt is the time step, c1 and c2 are constant model parameters and[︀ w1,k
w2,k

]︀
∼ WGN(0,W ).

Objective: estimate the predator and prey populations based on noisy
measurements of the total population

yk = xk,1 + xk,2 + vk
where vk ∼ WGN(0,V )

1
N. Kovvali, M. Banavar, A. Spanias. An Introduction to Kalman Filtering with MATLAB Examples.
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Example: Predator-prey system
→ There is an interaction between the two populations

→ When there is an abundance of preys, the predator population increases
→ This increase in predators drives the prey population down
→ With a scarcity of preys, the predator population is forced to decrease
→ The decrease in predators then results in an increase of the number of preys
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Example: Predator-prey system

xk+1 =

[︂
xk+1,1

xk+1,2

]︂
= f

(︂[︂
xk,1
xk,2

]︂)︂
+

[︂
wk,1

wk,2

]︂
yk = C

[︂
xk,1
xk,2

]︂
+ vk

This state-space model is non linear and Gaussian → use EKF for state
estimation
Extended KF:

Âk =

⎡⎣1 + Δt
(︁
1− xk−1|k−1,2

c2

)︁
−Δt

xk−1|k−1,1

c2

Δt
xk−1|k−1,2

c1
1 + Δt

(︁
1− xk−1|k−1,1

c1

)︁⎤⎦
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Example: Predator-Prey system
Simulations:

Δt = 0.01, c1 = 300, c2 = 200, W = [ 1 0
0 1 ] and V = 100

Initial populations: x0 = [ 400100 ]
Initial condition for estimator: x̂0|0 ∼ N (x0, [ 100 0

0 100 ])
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Example: Predator-Prey system

The EKF is able to
track the predator-prey
dynamics with good ac-
curacy
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