
Parametric models

Transfer functions and state-space models (a structure is required) :

G(s) =
K(s+ 1)

(s+ 3)(s+ 5)
; G(z) =

z2 + 2z + 3

z3 + 3z2 + 3z + 8

Number of parameters in model << Number of measured data
(redundancy leads to optimization approach)

Nonparametric models : Graphs, data, etc. (no structure is needed)

t

y(t)

0

impulse response

1
τ1

ω

K

G(jω)

-1

-2

1
τ2

frequency response

Number of measured data = Number of data in nonparametric model
algebraic approach (no redundancy)
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Basic Ingredients

A set of experimental data.

ZN = {(y(k), u(k)) | k = 1, . . . , N}

A model structure : a mapping from the past data Zk−1 to the
space of the model outputs. This model structure is used to
define a parameterized predictor :

ŷ(k, θ) = F(θ, Zk−1)

A fit criterion that should be minimized :

J(θ) =
N∑
k=1

[y(k)− ŷ(k, θ)]2

Model validation
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Basic Model Structures

We consider LTI discrete time model structures.

Finite Impulse Response (FIR)

The output of the system depends only on the past inputs :

y(k) = b1u(k − 1) + b2u(k − 2) + · · ·+ bmu(k −m) + e(k)

Autoregressive with external input (ARX)

The output depends on the past inputs and past outputs :

y(k) + a1y(k − 1) + · · ·+ any(k − n) = b1u(k − 1) + · · ·
+ bmu(k −m) + e(k)

State-space model

The output depends on the states and the inputs :

x(k + 1) = Ax(k) +Bu(k) + w(k)

y(k) = Cx(k) +Du(k) + e(k)
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FIR structure

FIR model : Suppose that the output of a system depends only on the
present and past inputs, i.e. :

y(k) = b0u(k) + b1u(k − 1) + · · ·+ bmu(k −m)

= [b0 + b1q
−1 + · · ·+ bmq

−m]u(k) = B(q−1)u(k)

The output computed by the convolution sum is :

y(k) = g(k) ∗ u(k) =
∞∑
j=0

g(j)u(k − j) = g(0)u(k) + g(1)u(k − 1) + · · ·

The parameters of the FIR model are the first m+ 1 components of the
impulse response : g(k) = bk for all k ≤ m.

Time delay

Sampled discrete time systems have always some delay (at least one
sampling delay). The number of leading coefficients of B(q−1) that are
equal to zero is called time delay and denoted by d ≥ 1.
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FIR structure

FIR model : The true model with a time delay d is supposed to be

y(k) = b◦du(k − d) + b◦d+1u(k − d− 1) + · · ·+ b◦mu(k −m) + e(k)

Parameterized predictor : ŷ(k, θ) = ϕT (k)θ where

ϕT (k) = [u(k − d) , u(k − d− 1) , . . . , u(k −m)]

θT = [bd , bd+1 , . . . , bm]

Fit criterion :

J(θ) =

N∑
k=1

[y(k)− ŷ(k, θ)]2 =

N∑
k=1

[y(k)− ϕT (k)θ]2

Least squares solution :

θ̂ =

[
N∑
k=1

ϕ(k)ϕT (k)

]−1 N∑
k=1

ϕ(k)y(k) = (ΦTΦ)−1ΦTY

Relation with the correlation approach ?
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FIR structure

Quality of the estimates : The true model is

y(k) = b◦du(k − d) + · · ·+ b◦mu(k −m) + e(k) = ϕT (k)θ0 + e(k)

The least squares estimates are :

θ̂ =

[
N∑
k=1

ϕ(k)ϕT (k)

]−1 N∑
k=1

ϕ(k)[ϕT (k)θ0 + e(k)]

= θ0 +

[
N∑
k=1

ϕ(k)ϕT (k)

]−1 N∑
k=1

ϕ(k)e(k) = θ0 + (ΦTΦ)−1ΦTE

Biasedness : If e(k) is zero mean and independent of u(k) (and
consequently of ϕ(k)), then the estimates are unbiased, i.e. : E{θ̂} = θ0.
Covariance of the estimates : If e(k) is white with variance σ2, then

cov[θ̂] = E
{
(θ̂ − θ0)(θ̂ − θ0)

T
}
= σ2

[
N∑
k=1

ϕ(k)ϕT (k)

]−1

= σ2(ΦTΦ)−1
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FIR structure

Quality of the estimates : The covariance of the estimate can be
rewritten as

cov[θ̂] =
σ2

N

[
1

N

N∑
k=1

ϕ(k)ϕT (k)

]−1

=
σ2

N
R̂−1

ϕϕ (0)

The covariance of the parameter error decays like 1/N .

The covariance is proportional to noise-to-signal-ratio.

The covariance does not depend on the specific shape of input or
noise signal.

A good experiment is the one in which the covariance matrix of the
input signal, or the information matrix, is large.

Estimation of the noise variance : An unbiased estimate is given by

σ̂2 =
1

N −m
J(θ̂)
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FIR structure

FIR and basis functions : An FIR estimator can be seen as an estimator using a
particular basis function :

ŷ(k, θ) =

m∑
i=d

θiq
−iu(k)

where [q−d, q−d−1, . . . , q−m]u(k) can be considered as a vector of basis
functions. When m goes to infinity, any linear model can be represented by this
predictor.
General basis functions : By choosing other basis functions better predictors
with smaller number of parameters can be obtained. For example :

ŷ(k, θ) =

m∑
i=d

θi
q−i

A(q−1)
u(k)

where A(q−1) is a known polynomial. If the roots of A(q−1) includes all poles of
the model, then with a few parameters the output can be estimated.
In practice, as the poles of the model are unknown, a good choice of A(q−1) with
the poles close to the dominant poles of the model can reduce significantly the
number of parameter to estimate.
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ARX structure

ARX model

The true model is supposed to be
y(k) + a◦1y(k − 1) + · · ·+ a◦ny(k − n) = b◦du(k − d) + · · ·+ b◦mu(k −m) + e(k)

Parameterized predictor

ŷ(k, θ) = −a1y(k − 1)− · · · − any(k − n)

+ bdu(k − d) + · · ·+ bmu(k −m) = ϕT (k)θ

where θT = [a1, . . . , an, bd, . . . , bm] and

ϕT (k) = [−y(k − 1), . . . ,−y(k − n), u(k − d), . . . , u(k −m)]

Fit criterion : J(θ) =
N∑
k=1

[y(k)− ŷ(k, θ)]2 =
N∑
k=1

[y(k)− ϕT (k)θ]2

Least squares solution : θ̂ =

[
N∑
k=1

ϕ(k)ϕT (k)

]−1 N∑
k=1

ϕ(k)y(k)

Parametric Identification (Chapter 3) System Identification Spring 2025 9 / 93



ARX structure

Quality of the estimates : The true model is y(k) = ϕT (k)θ0 + e(k)
and the least squares estimates are :

θ̂ = θ0 +

[
N∑
k=1

ϕ(k)ϕT (k)

]−1 N∑
k=1

ϕ(k)e(k)

Biasedness : The parametric error is given by

θ̃ ≡ θ̂ − θ0 =

[
1

N

N∑
k=1

ϕ(k)ϕT (k)

]−1 [
1

N

N∑
k=1

ϕ(k)e(k)

]
If the number of data N goes to infinity

lim
N→∞

(θ̂ − θ0) = R−1
ϕϕ (0)Rϕe(0)

Therefore, the parameter estimates will be asymptotically unbiased if
1 Rϕϕ(0) is not singular,
2 Rϕe(0) = 0. This condition is met only if e(k) is white.
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ARX structure

What is e(k) ? It is an equation noise and not the output noise. Let’s look at
the ARX structure :

y(k) + a◦1y(k − 1) + · · ·+ a◦ny(k − n) = b◦du(k − d) + · · ·+ b◦mu(k −m) + e(k)

[1 + a◦1q
−1 + · · ·+ a◦nq

−n]y(k) = [b◦dq
−d + · · ·+ b◦mq

−m]u(k) + e(k)

y(k) =
B0(q

−1)

A0(q−1)
u(k) +

1

A0(q−1)
e(k)

The output noise is e(k)/A0(q
−1), so assuming e(k) is white is not a reasonable

assumption.
ARX structure typically gives biased estimates

Covariance of the estimates

If e(k) is white with variance σ2, then the asymptotic covariance of the
parameters is :

cov(θ̂) = E{(θ̂ − θ0)(θ̂ − θ0)
T } =

σ2

N
R−1

ϕϕ (0)
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ARX structure

Instrumental Variables Method : Let’s replace ϕ(k) in the LS estimates
with ϕiv(k) and keep ϕT (k) unchanged

θ̂iv =

[
N∑
k=1

ϕiv(k)ϕ
T (k)

]−1 [ N∑
k=1

ϕiv(k)y(k)

]
The parametric error becomes :

θ̃iv = θ̂iv − θ0 =

[
N∑
k=1

ϕiv(k)ϕ
T (k)

]−1 N∑
k=1

ϕiv(k)[ϕ
T (k)θ0 + e(k)]− θ0

=

[
N∑
k=1

ϕiv(k)ϕ
T (k)

]−1 N∑
k=1

ϕiv(k)e(k)

Therefore, the parameter estimates are asymptotically unbiased if :
1 Rϕivϕ(0) is not singular,
2 Rϕive(0) = 0.

Choose ϕiv uncorrelated with noise and correlated with ϕ.
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ARX structure

Choice of Instrumental Variables

The instrumental variables should be

1 Uncorrelated with noise to have an asymptotically unbiased estimates.

2 Correlated as much as possible with ϕ(k) to make larger the
information matrix and reduce the variance of the estimates.

ϕT (k) = [−y(k − 1), . . . ,−y(k − n), u(k − d), . . . , u(k −m)]

Let’s choose ϕiv(k) as a noiseless estimate of ϕ(k)

IV based on auxiliary model

Identify an auxiliary model M(q−1) using the ARX or FIR structure.

Compute : yM (k) =M(q−1)u(k)

Choose the vector of instrumental variables as :

ϕTiv(k) = [−yM (k − 1), . . . ,−yM (k − n), u(k − d), . . . , u(k −m)]
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State-Space Model

State-space representation

An LTI discrete-time model can be represented in state-space form :

x(k + 1) = Ax(k) +Bu(k) + w(k)

y(k) = Cx(k) +Du(k) + e(k)

where w(k) and e(k) are state and output noise with the covariance :

E
{[

w(k)
e(k)

]
[w(k) e(k)]

}
=

[
Q S
ST R

]
State-space identification problem

Find A,B,C,D,Q,R, S and the system order n using the measured data.

The solution is not unique and depends on the state-space realization
(the choice of states by a similarity transform).

For given states or measured states the solution is trivial.

How to find the states from the input/output measurements ?
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State-Space Model

There are three methods to identify the state-space models

1) States are measured : The least squares algorithm is used to
identify the state-space model.

Subspace Identification Methods

2) Subspace projection : Based on the input/output data a state
estimator is constructed and the states are estimated.
Then, the least squares algorithm is used to identify the
state-space model.

3) Based on the observability matrix : The observability matrix is
constructed using the input/output data. Then, the
matrices C and A are identified from the observability
matrix. Next, the other matrices, B and D are identified
using the LS algorithm.
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State-Space Model (states are measured)

Trivial solution : Suppose that the states x(k) are measured. Then the
state-space model becomes a linear regression :

Y (k) = ΘΦ(k) + E(k)

where

Y (k) =

[
x(k + 1)
y(k)

]
,Θ =

[
A B
C D

]
,Φ(k) =

[
x(k)
u(k)

]
, E(k) =

[
w(k)
e(k)

]
Since the parameters are in a matrix, they can be estimated row by row using the
LS algorithm :

Θ̂T
i =

[
N∑

k=1

Φ(k)ΦT (k)

]−1 [ N∑
k=1

Φ(k)Yi(k)

]
where Θ̂i is the LS estimate of the i-th row of Θ and Yi(k) is the i-th row of
Y (k). The covariance of noise can be estimated based on the residuals :

Ê(k) = Y (k)− Θ̂Φ(k) ,

[
Q̂ Ŝ

ŜT R̂

]
=

1

N

N∑
k=1

Ê(k)ÊT (k)
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Subspace method

Subspace Method : The method includes the following steps :

1 Estimate the extended observability matrix from the data.

2 Use this matrix to estimate the order of the model.

3 Estimate the matrices A and C from the observability matrix.

4 Estimate B and D.

5 Estimate Q,R and S.

This method is detailed in a reverse order.
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Subspace method

Estimate B and D :

Suppose that Â and Ĉ are known. Then, construct an output predictor,
which is a linear regression :

ŷ(k) = Ĉ(qI − Â)−1Bu(k) +Du(k) = [BT D]

[
uTf (k)

u(k)

]
= θTϕ(k)

where uf (k) = Ĉ(qI − Â)−1u(k). Use LS algorithm. The estimates will be
unbiased because ϕ(k) is not noisy.

For a SISO model with n states we have :
Ĉ(qI − Â)−1 =

[
F1(q

−1), · · · , Fn(q
−1)
]
therefore

ŷ(k) = b1F1(q
−1)u(k) + · · ·+ bnFn(q

−1)u(k) +Du(k) = ϕT (k)θ

where ϕT (k) = [uf1(k), uf2(k), . . . , ufn(k), u(k)] and

θT = [b1, b2, . . . , bn, D] = [BT , D], with ufi(k) = Fi(q
−1)u(k). So the vector B

and the scalar D can be estimated with the classical LS algorithm. A similar

procedure can be used for MIMO systems.
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Subspace method

Estimate A and C :

Suppose that the extended observability matrix is given as (with r > n) :

Or =


C
CA
...

CAr−1


rny×n

Then, C is the first ny rows of Or.

A can be computed from :

[the last (r − 1)ny rows of Or] = [the first (r − 1)ny rows of Or]× Â

Since the rank of Or for observability is n, there will be a unique
solution for Â.
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Subspace method

Estimation of the order n :

We have the following facts

The rank of Or is n.

OrT is also an extended observability matrix, where T is a similarity
transform matrix.
Proof : We have C̄ = CT and Ā = T−1AT , therefore :

OrT =


CT
CAT
...

CAr−1T

 =


CT

CTT−1AT
...

CTT−1Ar−1T

 =


C̄
C̄Ā
...

C̄Ār−1


Note that T−1A2T = T−1ATT−1AT = Ā2.

Consider Q = OrT̃ with r > n columns and T̃ a full rank n× r
matrix. Then the rank of Q is n.
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Subspace method

Estimation of the order n :

Algorithm : Suppose that Q = OrT̃ is available and n is unknown.

1 The order n can be estimated by computing the rank of Q using the
singular value decomposition method.

2 Only n singular values of Q are strictly positive, the others are zero
(singular values of Q are the square root of the eigenvalues of QTQ).

3 In the presence of noise the SVD can be applied to Q̃ = QΦT , where
Φ is a matrix of instrumental variables, correlated with the
input/output data and uncorrelated with noise.

4 The first n columns of Q̃, corresponding to its largest singular values,
give the extended observability matrix. This can be computed as the
first n columns of U, where Q̃ = UΣVT .
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Subspace method

Estimation of the observability matrix : The noise-free output of a
state-space model is

y(k + i) = Cx(k + i) +Du(k + i)

= CAx(k + i− 1) + CBu(k + i− 1) +Du(k + i)

= . . .

= CAix(k) + CAi−1Bu(k) + CAi−2Bu(k + 1) + · · ·
+ CBu(k + i− 1) +Du(k + i)


y(k)

y(k + 1)
...

y(k + r − 1)


︸ ︷︷ ︸

Yr(k)

=


C
CA
...

CAr−1


︸ ︷︷ ︸

Or

x(k)+


D 0 · · · 0
CB D · · · 0
...

...
. . .

...
CAr−2B CAr−3B · · · D


︸ ︷︷ ︸

Sr


u(k)

u(k + 1)
...

u(k + r − 1)


︸ ︷︷ ︸

Ur(k)

Which leads to
Yr(k) = Orx(k) + SrUr(k)
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Subspace method

Let us assume that N + r− 1 data is available (with r > n) and define the
following matrices (the dimensions are given for SISO systems) :

Y = [Yr(1) , Yr(2) , . . . , Yr(N)]r×N

U = [Ur(1) , Ur(2) , . . . , Ur(N)]r×N

X = [x(1) , x(2) , . . . , x(N)]n×N

Then rewrite Yr(k) = Orx(k) + SrUr(k) for k = 1, . . . , N as :

Y = OrX + SrU

In this equation only Y and U are available.

Compute U⊥ = I −UT (UUT )−1U which is orthogonal to U .

Multiply the above equation by [U⊥]N×N to obtain
Qr×N ≡ Y U⊥ = OrXU⊥, which is a double extended observability
matrix (number of columns is N > n).

Estimate the rank of Q to find n using SVD : Q = UΣVT .

The extended observability matrix is the first n columns of U.
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Subspace method

Estimation of the observability matrix : In the presence of state and output
noise (w(k) and e(k)), we have :

y(k + i) = Cx(k + i) +Du(k + i) + e(k + i)

= CAx(k + i− 1) + CBu(k + i− 1) +Du(k + i)

+ Cw(k + i− 1) + e(k + i)

= . . .

= CAix(k) + CAi−1Bu(k) + CAi−2Bu(k + 1) + · · ·
+ CBu(k + i− 1) +Du(k + i)

+ CAi−1w(k) + · · ·+ Cw(k + i− 1) + e(k + i)

which leads to : Yr(k) = Orx(k) + SrUr(k) + Vr(k),
where

Vr(k) =


V (k)

V (k + 1)
...

V (k + r − 1)

 =


e(k)

Cw(k) + e(k + 1)
...

CAr−2w(k) + · · ·+ Cw(k + r − 2) + e(k + r − 1)


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Subspace method

Defining V = [Vr(1) , . . . , Vr(N)], we obtain :

Y = OrX + SrU + V

Let’s define : ϕr(k) = [ϕ(k − 1) , . . . , ϕ(k − r)]T not correlated with Vr(k) and
Φ = [ϕr(1) , . . . , ϕr(N)]. Then multiply the equation by 1

NU⊥ΦT to obtain :

Q̃ ≡ 1

N
Y U⊥ΦT = Or

1

N
XU⊥ΦT +

1

N
V U⊥ΦT = OrT̃N + VN

Here T̃N is an n× r matrix. Suppose we can find ϕr(k) such that :

lim
N→∞

VN = lim
N→∞

1

N
V U⊥ΦT = 0

lim
N→∞

T̃N = lim
N→∞

1

N
U⊥ΦT = T̃ has full rank n

Then the effect of noise will be asymptotically canceled. This can be achieved if
the instrumental variable ϕr(k) is chosen as a function of y(k − 1) or u(k − 1).
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Linear Black-Box Models

Structures without noise model (OE, FIR)

Assumption : noise is independent from input

y(k) = G0(q
−1)u(k) + n(k)

OE : G0(q
−1) =

B0(q
−1)

A0(q−1)
FIR : G0(q

−1) = B0(q
−1)

Structures with noise model (ARX, ARMAX, BJ)

Assumption : noise can be modeled by a filtered white noise

y(k) =
B0(q

−1)

A0(q−1)
u(k) +H0(q

−1)e(k)

ARX : H0(q
−1) =

1

A0(q−1)
; ARMAX : H0(q

−1) =
C0(q

−1)

A0(q−1)

BJ : H0(q
−1) =

C0(q
−1)

D0(q−1)
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Output error structure

True model

What is the ideal predictor (Suppose that G0(q
−1) is known) ?

Answer : ŷ(k) = G0(q
−1)u(k)

What is the ideal prediction error ?

Answer :
ε(k) = y(k)− ŷ(k)

= G0(q
−1)u(k) + n(k)−G0(q

−1)u(k) = n(k)

The ideal prediction error is not correlated with input signal

Parametric Identification (Chapter 3) System Identification Spring 2025 27 / 93



Output error structure

Parameterized predictor : Now, consider the parameterized predictor
ŷ(k, θ) = G(q−1)u(k) with unknown parameter vector θ.
Parameterized prediction error :

ε(k, θ) = y(k)− ŷ(k, θ) = y(k)−G(q−1)u(k) = y(k)− B(q−1)

A(q−1)
u(k)

• Prediction error is nonlinear w.r.t model parameters.

• Minimizing the identification criterion

J(θ) =

N∑
k=1

ε2(k, θ)

is a nonlinear least squares problem.

• The optimal solution θ̂ may be a local optimum.

• If θ̂ = θ0, then the residual ε(k, θ̂) is not correlated with the input
signal (validation test).
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Structures with noise model

True model : y(k) = G0(q
−1)u(k) +H0(q

−1)e(k)

Ideal output predictor : Suppose that G0(q
−1) and H0(q

−1) are
known and

H0(q
−1)e(k) =

[
1 +

H0(q−1)−1︷ ︸︸ ︷
h1q

−1 + . . .+ hnh
q−nh

]
e(k)

= e(k)︸︷︷︸
unpredictable

+ [H0(q
−1)− 1]e(k)︸ ︷︷ ︸

known at k−1

Ideal predictor ŷ(k, θ0) = G0(q
−1)u(k) + [H0(q

−1)− 1]e(k)

The prediction error for the ideal predictor ?

ε(k, θ0) = y(k)− ŷ(k, θ0) = e(k)

The prediction error for the ideal predictor is white
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Structures with noise model
Parameterized output predictor : Since G0 and H0 are unknown and
e(k − 1) is not measureable, the following predictor is proposed.

ŷ(k, θ) = G(q−1)u(k) + [H(q−1)− 1]ε(k, θ)

which leads to the following prediction error :

ε(k, θ) = y(k)− ŷ(k, θ) = y(k)−G(q−1)u(k)− [H(q−1)− 1]ε(k, θ)
= H−1(q−1)[y(k)−G(q−1)u(k)]

Important : If G and H have

the same structure as G0 and H0,

and if G = G0 and H = H0, then

the residual is white. If G = G0 but

H ̸= H0, then the residual is uncorrelated

with the input.
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ARX structure

True model :

General predictor : ŷ(k, θ) = G(q−1)u(k) + [H(q−1)− 1]ε(k, θ)

General prediction error : ε(k, θ) = H−1(q−1)[y(k)−G(q−1)u(k)]

ARX predictor : ŷ(k, θ) =
B(q−1)

A(q−1)
u(k) +

[ 1

A(q−1)
− 1
]
ε(k, θ)

Prediction error for ARX structure :

ε(k, θ) = A(q−1)[y(k)− B(q−1)

A(q−1)
u(k)] = A(q−1)y(k)−B(q−1)u(k)

The prediction error is linear w.r.t the model parameters
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ARMAX structure

True model :

General predictor : ŷ(k, θ) = G(q−1)u(k) + [H(q−1)− 1]ε(k, θ)

General prediction error : ε(k, θ) = H−1(q−1)[y(k)−G(q−1)u(k)]

ARMAX predictor : ŷ(k, θ) =
B(q−1)

A(q−1)
u(k) +

[C(q−1)

A(q−1)
− 1
]
ε(k, θ)

Prediction error for ARMAX structure :

ε(k, θ) =
A(q−1)

C(q−1)

[
y(k)− B(q−1)

A(q−1)
u(k)

]
=

1

C(q−1)

[
A(q−1)y(k)−B(q−1)u(k)

]
The prediction error is nonlinear w.r.t the model parameters
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Box-Jenkins structure

True model :

General predictor : ŷ(k, θ) = G(q−1)u(k) + [H(q−1)− 1]ε(k, θ)

General prediction error : ε(k, θ) = H−1(q−1)[y(k)−G(q−1)u(k)]

BJ predictor : ŷ(k, θ) =
B(q−1)

A(q−1)
u(k) +

[C(q−1)

D(q−1)
− 1
]
ε(k, θ)

Prediction error for BJ structure :

ε(k, θ) =
D(q−1)

C(q−1)

[
y(k)− B(q−1)

A(q−1)
u(k)

]
The prediction error is nonlinear w.r.t the model parameters
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Bias distribution in the frequency domain

Parseval’s relation

Rεε(0) = lim
N→∞

1

N

N∑
k=1

ε2(k, θ) =
1

2π

∫ π

−π
Φεε(ω)dω

We recall the following relations : if y(k) = G(q−1)u(k), then

Φyu(ω) = G(ejω)Φuu(ω)
Φyy(ω) = G(ejω)Φuy(ω)
Φyu(ω) = Φuy(−ω)

⇒ Φyy(ω) = |G(ejω)|2Φuu(ω)

Spectrum of the prediction error for the OE structure

ε(k, θ) = [G0(q
−1)−G(q−1)]u(k) + n(k)

Φεε(ω) = |G0(e
jω)−G(ejω)|2Φuu(ω) + Φnn(ω)
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Bias distribution in the frequency domain

Bias distribution for the OE structure

θ̂ = argmin
θ

1

2π

∫ π

−π

[
|G0(e

jω)−G(ejω, θ)|2Φuu(ω) + Φnn(ω)
]
dω

• If G and G0 have the same structure the minimum of the criterion is
obtained for θ̂ = θ0.

• If G and G0 have different structure, a good approximation of G0 is
obtained where the spectrum of u is large.

• To have a better model in the frequency where |F (ejω)| is large, the
input and output of the plant can be filtered by F (q−1) before
minimizing the criterion.

θ̂ = argmin
θ

1

2π

∫ π

−π

|F (ejω)|2
[
|G0(e

jω)−G(ejω, θ)|2Φuu(ω) + Φnn(ω)
]
dω
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Bias distribution in the frequency domain

Bias distribution for the structures with noise model

ε(k, θ) = H−1(q−1)
{[
G0(q

−1)−G(q−1)
]
u(k)

+
[
H0(q

−1)−H(q−1)
]
e(k)

}
+ e(k)

θ̂ = argmin
θ

1

2π

∫ π

−π
|H−1(ejω, θ)|2[|G0(e

jω)−G(ejω, θ)|2Φuu(ω)

+ |H0(e
jω)−H(ejω, θ)|2Φee(ω)]dω

• If G and H have the same structure and order as G0 and H0, an
asymptotically unbiased estimate is obtained.

• If G and G0 have different structure, a good approximation is
obtained where the spectrum of u and |H−1(ejω)| are large. For
example for the ARX structure with H−1 = A a good approximation
in HF will be obtained.
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Frequency analysis of PE methods

Bias distribution for the structures with noise model

θ̂ = argmin
θ

1

2π

∫ π

−π
|H−1(ejω, θ)|2[|G0(e

jω)−G(ejω, θ)|2Φuu(ω)

+ |H0(e
jω)−H(ejω, θ)|2Φee(ω)]dω

• If G and G0 have the same structure but H and H0 have different
structure, the parameters of G are asymptotically unbiased if there is
no common parameters between G and H (BJ structure). For ARX
and ARMAX the bias in noise model makes the parameters of the
plant model biased.

• If G and H are different with the structure of G0 and H0, the plant
model G is typically better identified than the noise model H because
the spectrum of u is larger than the spectrum of noise.
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Comparison of different structures

ARX : simple structure, LS algorithm, questionable noise model,
typically gives biased estimates (asymptotically unbiased
estimates only when n(k) = e(k)/A or IV are used).

FIR : simple structure (no denominator), LS algorithm, no
noise model, unbiased estimate, OE is minimized, needs
too many parameters.

OE : nonlinear optimization (GN algorithm), no noise model,
asymptotically unbiased estimate, OE is minimized,
variance of the estimated parameters is not optimal.

ARMAX : nonlinear optimization (GN algorithm), noise model has
a common denominator with the plant model,
asymptotically unbiased estimates.

BJ : nonlinear optimization (GN algorithm), noise model
independent from plant model, asymptotically unbiased
estimates, more parameters to estimate.
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Closed loop identification

Why are we interested in closed-loop identification ?

• There are systems that are unstable in open-loop operation.

• The output drift occurs in some systems in open-loop operation.

• It is always better to identify an accurate model in the frequency
zone interesting for control.

Problems :

• u is correlated with noise via feedback, then the main assumption
for the structures without noise model is not met.

• Without an external excitation the information matrix may
become singular if the controller is of low order. For example, for
a proportional controller, the input and output of the system are
linearly dependent (u(k) = −Ky(k)) and the information matrix
becomes singular. This problem can be solved by changing the
controller parameters during data acquisition.
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Closed loop identification

Direct methods

The closed loop system is excited with an external signal and a PE method
using the structures with a noise model is employed for model
identification (ARX, ARMAX or BJ).

A necessary condition to obtain a consistent estimate for G is that not
only G and G0 should have the same structure but also H and H0

Instrumental Variables Method

φT
IV (k) = [−yM (k − 1) . . .− yM (k − n) , uM (k − d) . . . uM (k −m)]

where : yM (k) =M1(q
−1)yc(k), uM (k) =M2(q

−1)yc(k).
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Closed loop identification

Indirect method

First a model for the closed-loop system is identified then, knowing
the controller, the plant model is computed :

T (q−1) =
y(k)

yc(k)
=

K(q−1)G0(q
−1)

1 +K(q−1)G0(q−1)

G(q−1) =
T (q−1)

K(q−1)[1− T (q−1)]

Properties :

• Order of G is typically too large.
(order of G > order of T > order of G0)

• For the reason stated above, there is a possibility of pole/zero
cancelation in G, so a model order reduction should be done.

• Controller should be known.
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Model Validation

1 Validation w.r.t the objective (control, simulation, prediction). If
the objective is met, the model is validated.

2 Validation based on a new set of experimental data.

Time domain validation : Compare the model output (identified
from the first set of data) with the measured output
(from the validation data).

Frequency domain validation : Compare the computed frequency
response of the model with the identified
nonparametric model (obtained by spectral analysis)
in the Bode diagram.

3 Validation by statistical methods (verification of assumptions).

Whiteness of residuals : For ARX, ARMAX and BJ.
Independence of residuals and past data : For all structures.
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Model Validation

Whiteness test

For the structures with noise model (ARX, ARMAX and BJ) the residual
ε(k, θ̂) should be white, if the estimated parameters (for the plant model
and the noise model) are equal to the true parameters θ̂ = θ0.

How can we test the whiteness of the residuals ?
We can compute the autocorrelation of ε(k, θ̂). If Rεε(h) = 0 ∀h ̸= 0
then ε(k, θ̂) is white.
However, this condition is never satisfied for a finite number of data.

For finite number of data R̂εε(h) ∀h ̸= 0 is a zero-mean random
variable if the estimate of the correlation function is unbiased.

We can compute a confidence interval around zero, if we know the
probability density function of R̂εε(h) ∀h ̸= 0.

What is the pdf of R̂εε(h) ?
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Model Validation (Whiteness Test)

Theorem (Central limit Theorem)

Consider N independent random variables x1, x2, . . . , xN with mean µ and

finite variance σ2 (with unknown distribution). Let x̄N =
1

N

N∑
n=1

xn, then

√
Nx̄N (for large N) converges in distribution to N (µ

√
N, σ2).

Take xh = ε(k)ε(k − h) with h ̸= 0 as a random variable and assume that
ε(k) is white. Then µ = E{xh} = 0 and

σ2 = E{ε2(k)ε2(k − h)} = R2
εε(0)

Therefore, according to the central limit Theorem :

√
N − hR̂εε(h) =

√
N − h

1

N − h

N−1∑
k=h

ε(k)ε(k − h) for h > 0

converges in distribution to a Gaussian distribution with N
(
0, R2

εε(0)
)
.
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Model Validation (Whiteness Test)

Knowing the distribution of R̂εε(h), we can compute a confidence
interval with a given probability for it.

It is clear that

r(h) =

√
N − hR̂εε(h)

R̂εε(0)

has a normal distribution N (0, 1)

The central limit theorem is Valid for large N − h. In practice we
should have N > 100 and estimate the correlation functions for
h < 25.

Therefore, If ε(k, θ̂) is white, then :

−2 ≤
√
N − hR̂εε(h)

R̂εε(0)
≤ 2 for 1 ≤ h < 25, N > 100

for a probability of 0.95.

It does not mean that the probability of whiteness of ε(k, θ̂) is 0.95.
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Model Validation

Cross-correlation test

For all structures the residual ε(k, θ̂) should be independent of the past
inputs. A correlation between the reiduals and input shows that there
exists some information about the true system in the residuals, which has
not been captured by the model.

Confidence interval

If the output error is not correlated with the input signal then :

−2 ≤
√
N − |h|R̂εu(h)√
R̂εε(0)R̂uu(0)

≤ 2 for − 25 ≤ h ≤ 25, N > 100

with a probability of 0.95.

It does not mean that the probability of the independence of ε(k, θ̂) and
u(k) is 0.95.
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Model Validation

Statistical validation tests

After a parametric identification based on the prediction error method, two
statistical validation tests are carried out in MATLAB :

Whiteness test for the residuals.

Cross-correlation test between the residuals and the past inputs.

If the cross-correlation test is satisfied then the plant model is
validated.

If both tests are satisfied then the plant and noise model are validated
for structures with noise model (ARX, ARMAX, BJ).

For the OE and FIR structures, the whiteness test is irrelevant. The
model is validated if the cross-correlation test is satisfied.

To validate a model, several types of validation tests (statistical,
time-domain and frequency-domain) should be performed.
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Practical aspects of identification

A successful system identification depends on certain choices :

Sampling period : Choice of sampling period, anti-aliasing filter,
numerical problems.

Input design : Choice of excitation signal (step, impulse, sum of
sinusoid signals, PRBS, white noise, filtered white noise,
...), choice of magnitude, signal conditioning (scaling,
high and low frequency filtering).

Model structure : Choice of linear, nonlinear, state-space,
input/output (ARX, ARMAX, etc), and the order
selection for the plant and noise model (numerator,
denominator, time delay).
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Sampling Period

1 The condition of Shannon Theorem must be respected :

ωs > 2ωmax ⇒ Ts <
π

ωmax

to avoid the aliasing effect. For physical system ωmax is infinity. In practice,
there is always the aliasing effect. This effect can be reduced by an
anti-aliasing filter.

2 The sampling period should not be too small for two reasons :

• Numerical problems for computing the controller (all poles and zeros of
the model goes to 1).

• Implementation problem (control computation time ≪ Ts).

3 In practice, if the model is identified for designing a controller, the sampling
frequency (or sampling time) is chosen as :

20ωb < ωs < 30ωb or
Tr
10

< Ts <
Tr
5

where ωb is the desired closed-loop bandwidth and Tr is the rise time of the
step response of the system. If ωb is not given, it is chosen equal to or
slightly greater than the open-loop bandwidth.
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Input design

How to design a PRBS :

1 Choice of magnitude with a trade-off between signal to noise ratio and
system nonlinearity.

2 Number of data N should be large enough to filter out the noise (200 < N).

3 The length of shift register n is related to the number of parameters in
model and desired frequency resolution. n is chosen greater than 6 to have
at least 32 frequency points excited. If system contains very low-damped
modes a greater n should be chosen.

4 Number of periods is chosen such that 2 is satisfied.

5 A PRBS can be enriched in low frequencies by using a frequency divider (the
clock frequency of the shift register is divided by Df ). A rule of thumb is :

length of the largest pulse in PRBS > settling time of the system

nDfTs > Tset

This rule should be used with caution because a large value of Df reduces
the frequency contents of PRBS in high frequencies.
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Input design

Signal conditioning :

Input and output should be scaled to have approximately the same
magnitude to avoid the numerical problems (otherwise the
information matrix or Hessian may be ill-conditioned).

Aberrant points should be detected and removed.

The mean value of input and output should be removed :

u(k) = ue(k)−
1

N

N∑
k=1

ue(k) y(k) = ye(k)−
1

N

N∑
k=1

ye(k)

Low-and high frequency disturbances should be removed from data by
appropriate data filter or by appropriate choice of structure of noise
model.

Low-pass filter L(q−1) =
1− q−1

1− αq−1
with α = e−T/τf

High-pass filter L(q−1) =
1− α

1− αq−1
with α = e−T/τf
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Structure selection

Estimate the structure (m, n, d) of a system using data

Notation

m : is the degree of B(q−1) = b0 + b1q
−1 + · · ·+ bmq

−m.

n : is the degree of A(q−1) = 1 + a1q
−1 + · · ·+ anq

−n.

d : is the time between the application of the input and the first
“significant” reaction of the system. d is the number of zero
leading coefficients of B(q−1) (d ≥ 1).

δ : is the order of the model G(z−1) = B(z−1)/A(z−1),
δ = max(m,n).

δmax : is an upper bound on the model order.

nA : is the number of parameters in A(q−1) (nA = n).

nB : is the number of parameters in B(q−1) (nB = m− d+ 1).

nθ : is the number of parameters to be estimated
(nθ = nA + nB).
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Structure selection

Estimation of model order δ

Nonparametric Methods :

An oscillation in the step or impulse response corresponds to
δ ≥ n ≥ 2, two distinct oscillations give δ ≥ n ≥ 4.

Each slope of -20 dB per decade in Bode diagram corresponds to one
simple pole of the plant model. Each resonance mode corresponds to
a pair of complex poles (δ ≥ number of evident poles).

The rank of Q = Y U⊥ in the subspace method (δ = rank Q).

Parametric Methods : By over-parameterization

Zero/Pole cancellation

Loss function evolution
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Model order estimation

Zero/Pole Cancellation

If δ is chosen too large (the model is over parameterized), there will
be zero/pole cancellations in the model.

We choose ARMAX structure with d = 1 and δ = n = m = nc. Then,
for δ = 1, . . . , δmax we identify a set of models.

For δ > δ0 (the true model order), there will be a common factor M
between A, B and C in the ARMAX identified models. Because if
A0, B0 and C0 are the solutions of

A0(q
−1)y(k) = B0(q

−1)u(k) + C0(q
−1)e(k)

then A =MA0, B =MB0 and C =MC0 will be also a solution of
the ARMAX equation.

Can we use ARX structure to verify zero/pole cancellation ?
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Model order selection

Zero/Pole Cancellation

The zero/pole map of each model can be inspected for possible
existence of zero/pole cancellation.

Each zero/pole cancellation indicates that the order of the model is
overestimated by 1.

In the presence of noise, the variance of the poles and zero and a
confidence interval around each pole and zero should be computed.

An intersection between the confidence interval of a pole and that of
a zero indicates an overestimation of the model order.

The model order is the maximum value of δ for which there is no
zero/pole cancellation.

Question : Can we avoid cancellation of true poles and zeros which are
close to each other (like resonance and anti-resonance modes in
mechatronic systems) ?
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Model order selection

Loss-function evolution :
Loss function is the mean value of the optimization criterion evaluated at the
estimated value.

Lf (δ,N) =
1

N

N∑
k=1

ε2(k, θ̂)

For ARX structure Lf (δ,N) is a monotonically nonincreasing function with
respect to δ (why ?).

Take d = 1 and δ = n = m. Then, for δ = 1, . . . , δmax we identify a set of
models.

For δ > δ0 (the true model order), the loss function will not change
significantly. The over parameterization is used for modelling the realization
of noise and not the model behaviour.

By inspecting the evolution of the loss function, we can find a rough
estimate of the model order at which the decrease of the loss function is not
significant.
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Model order selection

Loss-function evolution :
In order to have a quantitative criterion for model order selection, a penalty term
can be added to the loss function :

Cg(δ,N) = Lf (δ,N) + S(δ,N)

AIC = Lf (δ,N) +
2δ

N
J(n)

BIC = Lf (δ,N) +
δ log(N)

N

CIC = Lf (δ,N) +
δ log2(N)

N

FPE = Lf (δ,N)
1 + δ/N

1− δ/N

These methods usually give an over estimation of the model order !
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Structure selection

Estimation of time delay d :

Time-delay can be estimated by an FIR model with d = 0 (or d = 1
since we know that b0 = 0) and m = mmax.

The first coefficients of B(q−1) which are close to zero (considering
their standard deviations) represent the time delay. If bk is zero, we
have the following property with a probability of 0.95 :

0 ∈ [bk − 2σk , bk + 2σk]

FIR is preferred because it is unbiased and use LS algorithm (global
optimal solution).

For oscillatory systems, where m is large, the variance of the
parameters will be large so FIR will not be a good choice.

Other structures like OE or ARMAX with order δ can also be used
and the first coefficients of B(q−1) inspected.
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Structure selection

Estimation of n and m :
Take m = δ and d equal to the estimated value and identify ARX models for
n = 1, . . . , δ, and use the loss function method to estimate n.

Take n and d equal to the estimated values and identify ARX models for
m = d, . . . , δ, and use the loss function method to estimate m.

Check the variance of an and bm and compute an ± 2σ and bn ± 2σ. If zero
belongs to these intervals, it shows an overestimation of n and m.

In Matlab, nA, nB and d are estimated all together using the loss function
method. First the following intervals are chosen :

nA ∈ [nAmin
, nAmax

] , nB ∈ [nBmin
, nBmax

] , d ∈ [dmin , dmax]

Then, a set of models concerning all combinations of values in the intervals
are identified using the ARX structure. The number of parameters will
increase from nAmin + nBmin

to nAmax
+ nBmax

. Next, the lowest loss
function for each number of parameters is plotted versus the number of
parameters in the model. From the evolution of the loss function, the
number of parameters of numerator, denominator and d will be selected.
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Identification Procedure
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Optimization Algorithms

How to minimize the fit criterion ?

θ̂ = argmin
θ
J(θ) =

N∑
k=1

ε2(k, θ) =

N∑
k=1

[y(k)− ŷ(k, θ)]2

For FIR and ARX structures this leads to the linear LS algorithm. For
other structures, nonlinear optimization algorithms should be used.

Pseudo linear regression algorithm : Reformulate the output
predictor as a pseudo linear regression (i.e. ŷ(k) = φT (k, θ)θ) and
solve it iteratively.

Gauss-Newton algorithm : Initialize θ with LS algorithm. Compute
the gradient J ′ and Hessian J ′′ of the criterion. Use the following
algorithm :

θ̂i+1 = θ̂i − [J ′′(θ̂i)]
−1J ′(θ̂i)

Recursive algorithms : Solve the LS algorithm by a recursive
formula. Appropriate for on-line parameter estimation.
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Pseudo linear regression algorithm

Example (OE structure)

The output predictor is given by : ŷ(k, θ) =
B(q−1)

A(q−1)
u(k).

It can be rewritten as :

ŷ(k, θ) = −a1ŷ(k − 1, θ)− · · · − anŷ(k − n, θ)

+bdu(k − d) + · · ·+ bmu(k −m) = ϕT (k, θ)θ

where θT = [a1, . . . , an, bd, . . . , bm] and

ϕT (k, θ) = [−ŷ(k − 1, θ), . . . ,−ŷ(k − n, θ), u(k − d), . . . , u(k −m)]

Then θ̂i+1 =

[
N∑
k=1

ϕ(k, θ̂i)ϕ
T (k, θ̂i)

]−1 [ N∑
k=1

ϕ(k, θ̂i)y(k)

]

θ̂i ⇒ ŷ(k, θ̂i) =
B(q−1, θ̂i)

A(q−1, θ̂i)
u(k) ⇒ ϕ(k, θ̂i) ⇒ θ̂i+1
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Pseudo linear regression algorithm

Example (ARMAX structure)

The prediction error for the ARMAX structure can be rewritten as :

ε(k, θ) =
1

C(q−1)

[
A(q−1)y(k)−B(q−1)u(k)

]
= y(k) + a1y(k − 1) + · · ·+ any(k − n)− bdu(k − d)− · · ·

−bmu(k −m)− c1ε(k − 1, θ)− · · · − cncε(k − nc, θ)

= y(k)− ϕTx (k, θ)θ

where θT = [a1, . . . , an, bd, . . . , bm, c1, . . . , cnc ] and

ϕTx (k, θ) = [−y(k − 1), . . . ,−y(k − n), u(k − d), . . . , u(k −m),

ε(k − 1, θ), . . . , ε(k − nc, θ)]

⇒ θ̂i+1 =

[
N∑
k=1

ϕx(k, θ̂i)ϕ
T
x (k, θ̂i)

]−1 [ N∑
k=1

ϕx(k, θ̂i)y(k)

]
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Optimization algorithms

Gauss-Newton algorithm

J(θ) =

N∑
k=1

ε2(k, θ) =

N∑
k=1

[y(k)− ŷ(k, θ)]2 ⇒ θ̂i+1 = θ̂i − [J ′′(θ̂i)]
−1J ′(θ̂i)

Computing the gradient :

J ′(θ) =
∂J

∂θ
= −2

N∑
k=1

∂ŷ

∂θ
ε(k, θ) = −2

N∑
k=1

ψ(k, θ)ε(k, θ)

Computing the Hessian :

J ′′(θ) =
∂2J

∂θ∂θT
= 2

N∑
k=1

[
ψ(k, θ)ψT (k, θ)− ∂ψ

∂θ
ε(k, θ)

]

≈ 2

N∑
k=1

ψ(k, θ)ψT (k, θ)

where ψ(k, θ) ≡ ∂ŷ/∂θ should be computed for each model structure.
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Gauss-Newton algorithm

Example (Compute ψ(k, θ) for the OE structure)

The output predictor is given by :

ŷ(k, θ) =
B(q−1)

A(q−1)
u(k) =

bdq
−d + · · ·+ bmq

−m

1 + a1q−1 + · · ·+ anq−n
u(k)

∂ŷ

∂bi
=

q−i

A(q−1)
u(k) =

1

A(q−1)
u(k − i) i = d, . . . ,m

∂ŷ

∂ai
=

−q−iB(q−1)

A2(q−1)
u(k) =

−1

A(q−1)
ŷ(k − i) i = 1, . . . , n

ψT (k, θ) =
1

A(q−1)
[−ŷ(k − 1, θ), . . . ,−ŷ(k − n, θ),

u(k − d), . . . , u(k −m)] =
1

A(q−1)
ϕT (k, θ)
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Asymptotic covariance of the parameter estimates

What is the covariance of the parameter estimates ?

Assume that θ̂ converges to θ∗ when N goes to infinity.

Taylor expansion of J ′(θ̂) = 0 around θ∗ gives :

J ′(θ̂) ≈ J ′(θ∗) + J ′′(θ∗)(θ̂ − θ∗) = 0

⇒ θ̂ − θ∗ = −[J ′′(θ∗)]−1J ′(θ∗)

Then, cov(θ̂) = E{(θ̂ − θ∗)(θ̂ − θ∗)T } is given by :

cov(θ̂) = E
{
[J ′′(θ∗)]−1J ′(θ∗)J ′T (θ∗)[J ′′(θ∗)]−1

}
If ε(k, θ∗) is white with variance σ2e , then under some mild
assumptions J ′(θ∗)J ′T (θ∗) = σ2eJ

′′(θ∗). Replacing θ∗ with θ̂ :

cov(θ̂) ≈ σ2e

[
N∑
k=1

ψ(k, θ̂)ψT (k, θ̂)

]−1

Using the central limit theorem
√
N(θ̂ − θ∗) has a zero-mean

Gaussian distribution (for large N).
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Recursive least squares algorithm

For on-line identification of time-varying systems

Parameter estimates at instant k :

θ̂k =

[
k∑

i=1

ϕ(i)ϕT (i)

]−1 k∑
i=1

ϕ(i)y(i)

Problem : Too much computation at each sampling interval
Solution : Using recursive algorithm (compute θ̂k+1 as a function of θ̂k)

θ̂k = Pk

k∑
i=1

ϕ(i)y(i) where Pk =

[
k∑

i=1

ϕ(i)ϕT (i)

]−1

P−1
k+1 =

k+1∑
i=1

ϕ(i)ϕT (i) =
k∑

i=1

ϕ(i)ϕT (i) + ϕ(k + 1)ϕT (k + 1)

= P−1
k + ϕ(k + 1)ϕT (k + 1)
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Recursive least squares algorithm

θ̂k+1 = Pk+1

k+1∑
i=1

ϕ(i)y(i) = Pk+1

[
k∑

i=1

ϕ(i)y(i) + ϕ(k + 1)y(k + 1)

]
= Pk+1

[
P−1
k θ̂k + ϕ(k + 1)y(k + 1)

]
= Pk+1[P

−1
k+1 − ϕ(k + 1)ϕT (k + 1)]θ̂k + Pk+1ϕ(k + 1)y(k + 1)

= θ̂k + Pk+1ϕ(k + 1)
[
y(k + 1)− ϕT (k + 1)θ̂k

]
= θ̂k + Pk+1ϕ(k + 1)ε(k + 1)

Matrix inversion lemma

(A+BCD)−1 = A−1 −A−1B[C−1 +DA−1B]−1DA−1

To find the inverse of P−1
k+1 = P−1

k + ϕ(k + 1)ϕT (k + 1), take

A = P−1
k , B = ϕ(k + 1), C = 1, D = ϕT (k + 1) which leads to :

Pk+1 = Pk −
Pkϕ(k + 1)ϕT (k + 1)Pk

1 + ϕT (k + 1)Pkϕ(k + 1)
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Weighted least squares algorithm

Suppose that errors in different instants have different importance
(e.g. old errors has less importance in time-varying systems).
Weighted error is defined as :

EW ≡ W [Y − Φθ]

W is a weighting matrix (usually diagonal). The criterion becomes :

J(θ) = ET
WEW = ETW TWE = [Y − Φθ]TW TW [Y − Φθ]

and the vector of parameters :

θ̂ = (ΦTW TWΦ)−1ΦTW TWY

W TW = diag(λN−1, λN−2, . . . , λ1, λ0) 0.9 ≤ λ ≤ 0.99

The last error is weighted by λ0 = 1 and the first error by λN−1 ≈ 0.

λ is called forgetting factor (facteur d’oubli).
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Recursive weighted least squares

θ̂k =

[
k∑

i=1

ϕ(i)λk−iϕT (i)

]−1 k∑
i=1

ϕ(i)λk−iy(i) = Pk

k∑
i=1

ϕ(i)λk−iy(i)

P−1
k+1 = λP−1

k + ϕ(k + 1)ϕT (k + 1)

• For λ = 1 (without forgetting factor) the trace of adaptation gain
Pk+1 goes to zero when k goes to infinity (the algorithm becomes
insensitive to parameter variations).

• For λ < 1, the trace of Pk+1 does not converge to zero and the
algorithm remains alive w.r.t parameter variations.

The recursive algorithm using the matrix inversion lemma is given by :

Pk+1 =
1

λ

[
Pk −

Pkϕ(k + 1)ϕT (k + 1)Pk

λ+ ϕT (k + 1)Pkϕ(k + 1)

]
θ̂k+1 = θ̂k + Pk+1ϕ(k + 1)[y(k + 1)− ϕT (k + 1)θ̂k]
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Recursive least squares algorithm

Initialization : There are two ways for initializing the algorithm :

1 The initial values are fixed a priori. In general, θ̂0 = 0 and P0 = αI,
where α is a large value multiplied by the number of parameters p,
say α = 1000p, and I is the unity matrix. Because P0 is an initial
estimate of the covariance matrix of the parameters. Since the initial
value is far from the true one, a large covariance matrix is chosen.

2 The recursion starts after p sampling period. At iteration p, θ̂p is
estimated by solving a system of linear equation as :

θ̂p = Φ−1
p Yp ; Pp = [ΦT

pΦp]
−1

where

Φp =

 ϕT (1)
...

ϕT (p)


and Yp = [y(1), . . . , y(p)]T .
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Recursive least squares

Example (Time invariant system)

y(k) + a◦1y(k − 1) = b◦1u(k − 1) + e0(k) θ0 = [a◦1 b
◦
1]
T = [−0.5 0.5]T
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Recursive least squares

Example (Time variant system (without forgetting factor))

θ0 =

{
[−0.5 0.5]T

[0.5 − 0.5]T
pour

k < 200
k ≥ 200
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Recursive weighted least squares

Example (Time variant system (with forgetting factor λ = 0.97))

θ0 =

{
[−0.5 0.5]T

[0.5 − 0.5]T
pour

k < 200
k ≥ 200
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Identification of Nonlinear Systems

Grey-box Identification

In this approach, some physical insight is available (e.g. a first principle
model). Then the model parameters are identified by minimizing the
prediction error. The prediction error may be linear in parameters that
leads to a LS problem or it is nonlinear that leads to a nonlinear
optimization method.

Black-box Identification

In this approach, no physical insight is available. Then we choose a model
structure which has good flexibility to cover approximately a large class of
nonlinear behaviour. A typical choice is a linear combination of basis
functions that can approximate any nonlinear function when the number of
bases increases.
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Grey-box Identification

Example (Linear regression problem)

consider a nonlinear model given by :

y(k) = α0u(k − 1)y(k − 1) + β0y
2(k − 2) + n(k)

The output predictor is given by : ŷ(k) = ϕT (k)θ where

ϕT (k) = [u(k − 1)y(k − 1) y2(k − 2)] , θT = [α β]

Then the system parameters can be identified by the least squares method

If θ̂ = θ0, the residuals will be equal to n(k) (uncorrelated with u(k)). So
the uncorrelation of the residuals and u(k) can be used as a validation test.

A noise model can be considered with n(k) = H(q−1)e(k). In this case the
predictor will be

ŷ(k) = αu(k − 1)y(k − 1) + βy2(k − 2) + [H(q−1)− 1]ε(k)

and whiteness of the residuals can be used for the noise model validation.
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Grey-box Identification

Identification of robotic arms : The model of a robotic arm using the
Euler-Lagrange method is given by :

M(q)q̈ + C(q, q̇)q̇ +G(q) = τ

n Number of joints
q ∈ Rn×1 Joint angles
M(q) ∈ Rn×n Inertia matrix
C(q, q̇) ∈ Rn×n Coriolis matrix
G(q) ∈ Rn×1 Gravity vector
τ ∈ Rn×1 Torque vector

Procedure : The excitation signals are added to the joint torques and the
joint angles q, joint speeds q̇ and joint accelerations q̈ are measured. Then
the parameters of the matrices M,C and G can be identified with the
least squares algorithm.
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Grey-box Identification

Example (Identification of a two-link planar robot)

The dynamic model of the system can be obtained as :[
M11 M12

M21 M22

] [
q̈1
q̈2

]
+

[
C11 C12

C21 0

] [
q̇1
q̇2

]
=

[
τ1
τ2

]
M11 = I1 + I2 +m1r

2
1 +m2(l

2
1 + r22) + 2m2l1r2 cos(q2)

M12 =M21 = I2 +m2r
2
2 +m2l1r2 cos(q2)

M22 = I2 +m2r
2
2

C11 = −q̇2m2l1r2 sin(q2)

C12 = −(q̇1 + q̇2)m2l1r2 sin(q2)

C21 = q̇1m2l1r2 sin(q2)

C22 = 0
q

q

α = I1 + I2 +m1r
2
1 +m2(l

2
1 + r22), β = m2l1r2, γ = I2 +m2r

2
2
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Grey-box Identification

Example (Identification of a two-link planar robot)

Therefore, the model in linear regression form will be :

[
ϕ11(k) ϕ12(k) ϕ13(k)

0 ϕ22(k) ϕ23(k)

] α
β
γ

 =

[
τ1(k)
τ2(k)

]

where for each instant k :

ϕ11 = q̈1 ϕ12 = [2q̈1 + q̈2] cos(q2)− [q̇2q̇1 + q̇21 + q̇22] sin(q2)

ϕ13 = q̈2 ϕ22 = q̈1 cos(q2) + q̇21 sin(q2) ϕ23 = q̈1 + q̈2

Remarks :

LS algorithm can be used to identify α, β and γ and to compute M
and C that can be used in simulation or for controller design.

The physical parameters are not identifiable. However, if we know
some of them we can find the others.
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Black-box Identification

For any nonlinear system the output predictor can be given by :

ŷ(k, θ) = F (ϕ(k), θ)

where F is some nonlinear function of θ and ϕ(k).

Similar to the black-box models for linear systems, we can define :

NFIR : The regressor vector will use only past inputs u(k − l), l > 0.

NARX : The regressor will use past inputs u(k − l) and past outputs
y(k − l).

NOE : The regressor will use past inputs u(k− l) and past predicted
output ŷ(k − l, θ).

NARMAX : The regressor will use past inputs u(k − l), past outputs
y(k − l) and past prediction errors ε(k − l, θ).

Parametric Identification (Chapter 3) System Identification Spring 2025 80 / 93



Black-box Identification

Basis functions : F (ϕ(k), θ) can be well approximated using some basis
functions :

F (ϕ(k), θ) =

n∑
i=1

θiFi(ϕ(k))

Bias-Variance Trade-off : When n→ ∞ any nonlinear function is
approximated with the basis functions but increasing n increases the
variance of the parameters.

Choice of Fi : It can be chosen using a single parameterized mother basis
function denoted by P (x).

Mother basis functions : Typical functions are

piecewise-constant pulse function

Gaussian function

Sigmoid function
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Black-box Identification

Example (Piecewise-constant pulse function)

P (x) =

{
1 for 0 ≤ x < ∆
0 otherwise

Any nonlinear function F (x) can be approximated by :

F (x) =

∞∑
i=0

θiP (x− i∆)

where θi = F (i∆) and Fi(x) = P (x− i∆).
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Black-box Identification

Example (Gaussian function)

P (x) =
1

σ
√
2π
e−

(x−µ)2

2σ2

Any nonlinear function F (x) can be approximated by :

F (x) =

n∑
i=1

θiP (x− µi)

The parameters of the Gaussian function βi = [µi σi] should be chosen a
priori or be optimized together with θ.
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Black-box Identification

The model parameters are obtained as :

θ = argmin
θ,β

N∑
k=1

∥y(k)−
n∑

i=1

θiFi(ϕ(k), β)∥

ϕ(k) is chosen based on some a priori knowledge about the system. If
no information is available a high dimension ϕ(k) may be considered
that complicates the optimization problem.

A basis function like Gaussian function, wavelet, sigmoid, etc should
be chosen.

If the parameters of the basis function are fixed (defined by user), the
optimization becomes a least squares problem, otherwise a nonlinear,
gradient-based, numerical optimization should be solved.

In order to consider the bias-variance trade-off a new term λ∥θ∥ can
be added to the fit criterion, such that bias and variance are
minimized together.
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Black-box Identification

Neural Network models : Neural network is a very general black-box
model structure based on convolving basis function expansions. It consists
of input layer, hidden layers and output layer. Each layer includes some
nodes. The output of each node is a function (called activation function)
of the sum of its inputs.

Neural Network models can be used for modelling of very complex
nonlinear systems.
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Neural Network Models

Example (ARX model)

Consider the following simple neural network model with no hidden layer :

y(k)

z

w1=a0

w2=b0

u(k)

The output of the NN model is :

z = w1y(k) + w2u(k)

which corresponds to a simple ARX model with

y(k + 1) = a0y(k) + b0u(k)

if we take z = y(k + 1), w1 = a0 and w2 = b0.
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Neural Network Models

Example (NARX model)

Consider the following simple neural network model with no hidden layer :

y(k)y(k-1)

z

w1=a0

w2=b0

u(k)y(k-2)

The output of the NN model is :

z = w1y(k)y(k − 1) + w2u(k)y(k − 2)

which corresponds to a simple NARX model with

y(k + 1) = a0y(k)y(k − 1) + b0u(k)y(k − 2)

if we take z = y(k + 1), w1 = a0 and w2 = b0.
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Neural Network Models

Feedforward Neural Network :
x1

z

w1

wp

x2

v11

v21

xq

......

v12

v1p

v22
v2p

vq1

vq2

vqp

w2

1

b

h1

h2

hp

hi is the basis function and

W = [w1, · · · , wp, b]
T

H = [h1, · · · , hp, 1]T

xi ∈{y(k), · · · , y(k − n), u(k), · · · ,
u(k −m), y(k)2, · · · , y(k − n)2,

u(k)2, · · · , u(k −m)2, y(k)u(k),

· · · , y(k − n)u(k −m)}

si =

q∑
j=1

xjvji (vji are known weights)

z =

p∑
i=1

wihi(si) + b =W TH

W =

(
N∑
k=1

HkH
T
k

)−1 N∑
k=1

Hky(k + 1)
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Neural Network Models

Recurrent Neural Network : Instead of using input and output data
(u, y) as in feedforward NN, input and predicted output (u, ŷ) data are
used in NN :

x1

w1

wp

x2

v11

v21

xq

......

v12

v1p

v22
v2p

vq1

vq2

vqp

w2

1

b

h1

h2

hp

......

xi ∈{ŷ(k), · · · , ŷ(k − n), u(k), · · · ,
u(k −m), ŷ(k)2, · · · , ŷ(k − n)2,

u(k)2, · · · , u(k −m)2, ŷ(k)u(k),

· · · , ŷ(k − n)u(k −m)}
ŷ(k + 1) =W THk(W ),NOE !

Iterative Gauss-Newton solution :

Ŵi+1 = Ŵi + γ

(
N∑
k=1

Hk(Ŵi)H
T
k (Ŵi)

)−1 N∑
k=1

Hk(Ŵi)εk
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Neural Network Models

Activation Functions : Typical activation functions are :

sigmoid function

fs =
1

1 + e−x

tanh function

ft =
ex − e−x

ex + e−x

Rectified linear
activation unit (ReLU)

fR =

{
0, if x < 0

x, if x ≥ 0
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Neural Network Models

NN training using back propagation (gradient descent) algorithm :
Optimizing W

x1

w1

w2x2

v11

v22

v12

v21

h1

h2

s1 = v̂11x1 + v̂21x2

s2 = v̂12x1 + v̂22x2

ŷ = ŵ1h1(s1) + ŵ2h2(s2)

= Ŵ TH

h(s) =
1

1 + e−s
,
∂h

∂s
= h(s)(1− h(s))

E =
1

2
ε2 =

1

2
(y − ŷ)2

∂E

∂ŷ
= −ε, ∂ŷ

∂ŵ1
= h1(s1)

∂E

∂ŵ1
=
∂E

∂ŷ

∂ŷ

∂ŵ1
= −h1(s1)ε

∂E

∂ŵ2
= −h2(s2)ε

∂E

∂Ŵ
= −Hε

Ŵi+1 = Ŵi − γ
∂E

∂Ŵ
= Ŵi + γHε
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Neural Network Models

NN training using back propagation (gradient descent) algorithm :
Optimizing V

x1

w1

w2x2

v11

v22

v12

v21

h1

h2

s1 = v̂11x1 + v̂21x2

s2 = v̂12x1 + v̂22x2

ŷ = ŵ1h1(s1) + ŵ2h2(s2)

= ŴTH

V =

[
v11 v12
v21 v22

]
, DH =

[
∂h1
∂s1

∂h2
∂s2

]T

E =
1

2
ε2 =

1

2
(y − ŷ)2

∂E

∂ŷ
= −ε, ∂ŷ

∂h1
= ŵ1,

∂s1
∂v̂11

= x1

∂E

∂v̂11
=
∂E

∂ŷ

∂ŷ

∂h1

∂h1
∂s1

∂s1
∂v̂11

= −x1ŵ1(∂h1/∂s1)ε

∂E/∂v̂21 = −x2ŵ1(∂h1/∂s1)ε

∂E/∂v̂12 = −x1ŵ2(∂h2/∂s2)ε

∂E/∂v̂22 = −x2ŵ2(∂h2/∂s2)ε

∂E/∂V = −X(Ŵ ◦DH)T ε

Vi+1 =Vi−γ
∂E

∂V
=Vi+γX(Ŵ ◦DH)T ε
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Neural Network Models

Some basic terminology : Given the number of input/out data N , the
prediction error criterion can be defined as :

E =
1

2

m∑
k=1

ε2k =
1

2

m∑
k=1

(y(k)− ŷ(k))2

An epoch is one complete training pass over the whole data set (all
weights are converged).

Batch : When divide data set into number of sets or parts, each set or
part is a batch ; A batch is used for one gradient update.

Iteration An iteration consists of updating the gradients on a single
batch of data ;

Batch size : Total number of data, m, present in a single batch ;
Batch gradient descent : m = N , smooth convergence ;
Stochastic gradient descent (SGD) : m = 1, fast speed for large data ;
Mini-batch gradient descent : 1 < m < N ;
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