Parametric models

Transfer functions and state-space models (a structure is required) :

K(s+1) ‘ 22+ 22+ 3

(O =Gy - YT mEa s 1s

Number of parameters in model << Number of measured data
(redundancy leads to optimization approach)

Nonparametric models : Graphs, data, etc. (no structure is needed)
@l frequency response (1) impulse response
K

!
1 1 0 » !
T T . .
Number of measured data = Number of data in nonparametric model
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Basic Ingredients

@ A set of experimental data.
28 = {(y(k), ulk)) [k = 1,..., N}

o A model structure : a mapping from the past data Z¥~! to the
space of the model outputs. This model structure is used to
define a parameterized predictor :

g(k’ 0) = f<97 Zk_l)

o A fit criterion that should be minimized :

o Model validation

Parametric Identification (Chapter 3) System Identification Spring 2025



Basic Model Structures

We consider LTI discrete time model structures.

Finite Impulse Response (FIR)

The output of the system depends only on the past inputs :
y(k) = byu(k — 1) + bou(k — 2) + - - - + bpyu(k — m) + e(k)

Autoregressive with external input (ARX)
The output depends on the past inputs and past outputs :
y(k) + ary(k —1) + - +apy(k —n) = biu(k — 1) + - -
+ bpu(k —m) + e(k)

State-space model

The output depends on the states and the inputs :
z(k + 1) = Az(k) + Bu(k) + w(k)
y(k) = Cz(k) + Du(k) + e(k)
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FIR structure

FIR model : Suppose that the output of a system depends only on the
present and past inputs, i.e. :

y(k) = bou(k) + byu(k — 1) + - - 4+ byu(k —m)
= [bo +b1g" " + -+ + bg ™u(k) = B(g~ Hu(k)

The output computed by the convolution sum is :
y(k) = Zg k—j)=g0)u(k) +g(1)u(k - 1)+ -

The parameters of the FIR model are the first m + 1 components of the
impulse response : g(k) = by, for all k < m.

Time delay

Sampled discrete time systems have always some delay (at least one
sampling delay). The number of leading coefficients of B(g~!) that are
equal to zero is called time delay and denoted by d > 1.
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FIR structure

FIR model : The true model with a time delay d is supposed to be
y(k) = bqu(k — d) + by u(k —d —1) +--- 4+ b u(k —m) + e(k)

Parameterized predictor :  §(k,0) = ¢ (k)0 where

oL (k) = [u(k—d), u(k —d—1), ..., u(k —m)]
07 = [bg, bas1, -, by
Fit criterion :
N N
J0) = ly(k) = 9(k, 0)* = _[y(k k)6)”
k=1 k=1

Least squares solution :

N -1
6= [Z¢(k)¢T(k)] > o(k)y(k) = (@7 @) TeTY

Relation with the correlation approach ?
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FIR structure

Quality of the estimates : The true model is
y(k) = bgu(k — d) + - + bo,u(k — m) + e(k) = ¢ (k)fy + e(k)
The least squares estimates are :

N
0= [Z ¢>(k‘)¢T(k‘)] Z p(k)[o" (k)bo + e(k)]
k=1

N —1 N

> ¢(k)¢T(k)] > b(k)e(k) = 0o + (7 @) @TE
k=1 k=1

Biasedness : If e(k) is zero mean and independent of u(k) (and

consequently of ¢(k)), then the estimates are unbiased, i.e. : E{0} = 6.
Covariance of the estimates : If ¢(k) is white with variance o2, then

-1
cov[f] = {(9 80) (6 — 6o) }—a [Z¢ ] — (@7 ®)!

=00+
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FIR structure

Quality of the estimates : The covariance of the estimate can be
rewritten as

2 N - o2 .
cov[f] = UN []1, ;¢(/€)¢T(/€)] NR_QH )

@ The covariance of the parameter error decays like 1/N.
@ The covariance is proportional to noise-to-signal-ratio.
@ The covariance does not depend on the specific shape of input or
noise signal.
@ A good experiment is the one in which the covariance matrix of the
input signal, or the information matrix, is large.
Estimation of the noise variance : An unbiased estimate is given by

— 1 R
2 _
7 N—mJ(Q)
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FIR structure

FIR and basis functions : An FIR estimator can be seen as an estimator using a
particular basis function :

Gk, 0) = 0iq "u(k)
i=d

where [g7¢, ¢7971, ... g ™]u(k) can be considered as a vector of basis
functions. When m goes to infinity, any linear model can be represented by this
predictor.

General basis functions : By choosing other basis functions better predictors
with smaller number of parameters can be obtained. For example :

NRIE o PR
y(kve)_giezA(q_l) (k)

where A(q™!) is a known polynomial. If the roots of A(g~!) includes all poles of
the model, then with a few parameters the output can be estimated.

In practice, as the poles of the model are unknown, a good choice of A(g~!) with
the poles close to the dominant poles of the model can reduce significantly the
number of parameter to estimate.
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ARX model

The true model is supposed to be
y(k) +aSy(k — 1)+ - +any(k —n) = bqu(k —d) + - - - + b u(k — m) + e(k)

ARX structure

Parameterized predictor
§(k,0) = —ary(k — 1) —--- — any(k —n)
+ bgu(k —d) + - - - + bpu(k —m) = ¢ (k)6

| A\

where 07 =[ay,... ,an,bq,... ,bm] and
oL (k) = [-y(k —1),...,—y(k —n),uk —d),... ,u(k —m)]

N
Fit criterion :  J(0) = ) [y(k) — 5k, 0)]* = [y(k) — ¢" (k)6)?
k=1
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ARX structure

Quality of the estimates : The true model is y(k) = ¢ (k) + e(k)
and the least squares estimates are :

N 1
b=t |30 ¢<k>¢T<k>] S o)k
k=1

k=1

Biasedness : The parametric error is given by

N -1
~ 1 T
0=0-0,= [NZ¢<k>¢ <k>] [
k=1
If the number of data N goes to infinity
. j _ p-1
ngnoo(e to) R¢¢ (O)Rqﬁe (0)

> ¢(k)€(k)]

k=1

2=

Therefore, the parameter estimates will be asymptotically unbiased if
@ Ry44(0) is not singular,
@ R4.(0) = 0. This condition is met only if e(k) is white.
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ARX structure

What is e(k) ? It is an equation noise and not the output noise. Let's look at
the ARX structure :

y(k)+afy(k—1)+---+apy(k —n) =bu(k —d) + - - - + b2 u(k — m) + e(k)

[ +aiq™" + -t ang"ly(k) =BG~ + - + b0~ " u(k) + (k)
Bo(g™") 1
k k) + e(k
0= A0 O 2y
The output noise is e(k)/Ao(q™"), so assuming e(k) is white is not a reasonable

assumption.
ARX structure typically gives biased estimates

Covariance of the estimates

If e(k) is white with variance 2, then the asymptotic covariance of the
parameters is :

cov(f) = E{(0 — 60)(6 — 60)7} =
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ARX structure

Instrumental Variables Method : Let's replace ¢(k) in the LS estimates
with ¢, (k) and keep ¢ (k) unchanged

A N “lrnN
Oiv = [Z ¢iv(k)¢T(k)] [Z ¢w(k)y(k)]
k=1 k=1

The parametric error becomes :

' N
O = iy — 00 = | Y din(k)d" (k) Zgbw k)6 + (k)] — 6o
Lk=1

' N
= 3" tu®e" (k)| D pilk)elk)
k=1 k=1

Therefore, the parameter estimates are asymptotically unbiased if :
@ Ry,,4(0) is not singular,
@ Ry c(0)=0.
Choose ¢;,, uncorrelated with noise and correlated with ¢.
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Choice of Instrumental Variables

ARX structure

The instrumental variables should be
© Uncorrelated with noise to have an asymptotically unbiased estimates.

@ Correlated as much as possible with ¢(k) to make larger the
information matrix and reduce the variance of the estimates.

¢T(k:) =[-ylk—-1),...,—y(k —n),u(k — d),...,u(k —m)]

Let’s choose ¢;,(k) as a noiseless estimate of ¢(k)

IV based on auxiliary model

o Identify an auxiliary model M (g~') using the ARX or FIR structure.
e Compute :  yu(k) = M (g Yu(k)
@ Choose the vector of instrumental variables as :

¢Z;)(k) = [_yM(k_ 1)?"'7_yM(k; _n)vu(k _d)a"'vu(k_m)]
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State-Space Model

State-space representation

An LTI discrete-time model can be represented in state-space form :
xz(k + 1) = Az(k) + Bu(k) + w(k)
y(k) = Cz(k) + Du(k) + e(k)

where w(k) and e(k) are state and output noise with the covariance :

B[ 4 e cwonf={ g 7]

State-space identification problem

Find A, B,C,D,Q, R, S and the system order n using the measured data.

@ The solution is not unique and depends on the state-space realization
(the choice of states by a similarity transform).

@ For given states or measured states the solution is trivial.

@ How to find the states from the input/output measurements ?
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State-Space Model

There are three methods to identify the state-space models

1) States are measured : The least squares algorithm is used to
identify the state-space model.

Subspace ldentification Methods

2) Subspace projection : Based on the input/output data a state
estimator is constructed and the states are estimated.
Then, the least squares algorithm is used to identify the
state-space model.

3) Based on the observability matrix : The observability matrix is
constructed using the input/output data. Then, the
matrices C' and A are identified from the observability
matrix. Next, the other matrices, B and D are identified
using the LS algorithm.
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State-Space Model (states are measured)

Trivial solution : Suppose that the states x(k) are measured. Then the
state-space model becomes a linear regression :

Y (k) = 0®(k) + E(k)
where
=] " o=@ b ew=[ 15 ] =[]

Since the parameters are in a matrix, they can be estimated row by row using the
LS algorithm :

oer = i @(k)@T(k)]
k=1

where ©; is the LS estimate of the i-th row of © and Y;(k) is the i-th row of
Y (k). The covariance of noise can be estimated based on the residuals :

S a(Yi(k)
k=1

E(k) =Y (k) —0d(k) , [5% g]: E(k)ET (k)
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Subspace method

Subspace Method : The method includes the following steps :
@ Estimate the extended observability matrix from the data.
@ Use this matrix to estimate the order of the model.
© Estimate the matrices A and C from the observability matrix.
@ Estimate B and D.
© Estimate @, R and S.

This method is detailed in a reverse order.
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Subspace method

Estimate B and D :

Suppose that A and C are known. Then, construct an output predictor,
which is a linear regression :

~ A =1 T UT(k‘) T
3(0) = Clat = Ay Bull) + Dutk) = (57 ]| 11 | = 7o)

where us(k) = C(qI — A)~'u(k). Use LS algorithm. The estimates will be
unbiased because ¢(k) is not noisy.

V.

Fpr a SISAO model with n states we have :
Clgl — A~ = [Fi(g71), -, Fa(g™")] therefore

9(k) = biFi(g ulk) + - + baFu(q™u(k) + Du(k) = 6" (k)0

where ¢T (k) = [ug, (k),uz, (k), ..., uy, (k),u(k)] and

67 = [b1,ba, ..., by, D] =[BT, D], with uy, (k) = Fi(¢~)u(k). So the vector B
and the scalar D can be estimated with the classical LS algorithm. A similar
procedure can be used for MIMO systems.
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Subspace method

Estimate A and C :

Suppose that the extended observability matrix is given as (with r > n) :

C

CA
O, =

CAr—l

TNy XN

@ Then, C' is the first n, rows of O,.
@ A can be computed from :

[the last (r — 1)n, rows of O,] = [the first ( — 1)n, rows of O,] x A

@ Since the rank of O, for observability is n, there will be a unique
solution for A.
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Subspace method

Estimation of the order n :
We have the following facts
@ The rank of O,. is n.
e O,T is also an extended observability matrix, where 7" is a similarity

transform matrix.
Proof : We have C = CT and A = T~ ' AT, therefore :

CcT CT C
CAT CTT AT CA
OTT = . = . = .
CA™ T CTT 1A 1T CA™1

Note that T 1A2T = T ATT1AT = A2

o Consider Q = O, T with r > n columns and T a full rank n x r
matrix. Then the rank of ) is n.
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Subspace method

Estimation of the order n :

Algorithm : Suppose that Q = O, T is available and n is unknown.

@ The order n can be estimated by computing the rank of ) using the
singular value decomposition method.

@ Only n singular values of @ are strictly positive, the others are zero
(singular values of @ are the square root of the eigenvalues of Q7Q).

O In the presence of noise the SVD can be applied to Q = Q®”, where
® is a matrix of instrumental variables, correlated with the
input/output data and uncorrelated with noise.

Q The first n columns of Q, corresponding to its largest singular values,
give the extended observability matrix. This can be computed as the
first n columns of U, where Q = UV .
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Subspace method

Estimation of the observability matrix : The noise-free output of a
state-space model is
y(k+1i) = Cx(k + 1) + Du(k + 1)
=CAz(k+i—1)4+CBu(k+1—1)+ Du(k +1)
= CA'z(k) 4+ CA™'Bu(k) + CA?Bu(k +1) + - -
+ CBu(k+i—1) 4 Du(k + 1)

y(k) C D 0 - 0 u(k)
y(k+1) CcA CB D -0 u(k +1)
. = z(k)+ . .
y(k+r—1) CAT—1 CA™ 2B CA™ 3B ... D u(k +7—1)
Y, (k) Oy Sr Ur (k)

Which leads to
Y. (k) = O,x(k) + S U (k)
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Subspace method

Let us assume that N +r — 1 data is available (with 7 > n) and define the
following matrices (the dimensions are given for SISO systems) :

Y =[Y,(1), Yn(2), ..., Yo(N)] . »
U=[UQ1),U:2),...,U(N)],,
X = [1'(1) ) ‘T(2)7 SRR 'r(N)]an

Then rewrite Y,.(k) = Oz (k) + S;Up(k) for k=1,...,N as:
Y =0,X+S5U

@ In this equation only Y and U are available.

o Compute ULt =T —UT(UUT)~1U which is orthogonal to U.

o Multiply the above equation by [U], . to obtain
Q,.x =YUL =0, XU, which is a double extended observability
matrix (number of columns is N > n).

o Estimate the rank of Q to find n using SVD : Q = ULV,

@ The extended observability matrix is the first n columns of U.
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Subspace method

Estimation of the observability matrix : In the presence of state and output
noise (w(k) and e(k)), we have :
y(k+1i) = Cx(k+1i)+ Du(k +1i) + e(k +1)
=CAzx(k+i—1)+CBu(k+i—1)4+ Du(k + 1)
+Cwk+i—1)+e(k+1)

= CA'z(k) + CA™'Bu(k) + CA72Bu(k +1) + - -
+ CBu(k+1i—1)+ Du(k +1)
+CA ' w(k) + -+ Cw(k +i— 1)+ e(k +1)

which leads to : Y, (k) = Opz(k) + S, U.(k) + V,.(k),
where
V(k) e(k)
V(k+1) Cw(k) + e(k + 1)
V(k-f—.?“—l) CATwi(k)—i----—i—Cw(.k:-l-r—Q)+6(k+r—1)
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Subspace method

Defining V = [V,.(1), ..., V;.(N)], we obtain :
Y=0,X+SU+V

Let's define : ¢,.(k) = [¢p(k — 1), ..., ¢(k —r)]T not correlated with V,.(k) and
® =[¢.(1), ..., ¢-(N)]. Then multiply the equation by %UJ‘CI)T to obtain :

~ 1 1 1 ~
= YU =0, XU+ + _VU+oT =0, Ty +V,
Q N O N + N O, Ty +Vn
Here T is an n x r matrix. Suppose we can find o (k) such that :
1
lim Vy = lim —VU+®T =0
N—o00 N—oco N
. 1 .
lim Ty = lim NU%T =T has full rank n

N —oc0 N—o0

Then the effect of noise will be asymptotically canceled. This can be achieved if
the instrumental variable ¢, (k) is chosen as a function of y(k — 1) or u(k — 1).
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Linear Black-Box Models

Structures without noise model (OE, FIR)

Assumption : noise is independent from input
y(k) = Go(g™ u(k) +n(k)

_ Bo(q!)
OE: Go(¢!) =
old™) Ao(q™1)
Structures with noise model (ARX, ARMAX, BJ)

Assumption : noise can be modeled by a filtered white noise

-1
o) = S0l + Hola™)elh)

FIR: Golg b =DBy(¢g )
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Output error structure

True model u(k)
—>

Z/p(k) N

Ao(q™1) +

What is the ideal predictor (Suppose that Gy(q~') is known) ?
Answer : 9(k) = Go(q Hu(k)
What is the ideal prediction error?

e(k) = y(k) —g(k)

Answer : = Golg u(k) + n(k) — Golg Hu(k) = n(k)

The ideal prediction error is not correlated with input signal
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Output error structure

Parameterized predictor : Now, consider the parameterized predictor
9(k,0) = G(q 1 )u(k) with unknown parameter vector 6.
Parameterized prediction error :

B(g™")
A(g™1)

e(k,0) = y(k) — §(k,0) = y(k) — G(q~ )u(k) = y(k) — u(k)

e Prediction error is nonlinear w.r.t model parameters.
e Minimizing the identification criterion

N
J(0) = £(k,0)
k=1

is a nonlinear least squares problem.

e The optimal solution 6 may be a local optimum.

o If = 6y, then the residual e(k, ) is not correlated with the input
signal (validation test).
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Structures with noise model

True model : y(k) = Go(q M u(k) + Ho(qg "e(k)
Ideal output predictor : Suppose that G(¢~!) and Hy(q™!) are
known and
Ho(qj)—l
Ho(g Ne(k) = [1+Mg " +.. +hnhq ]
= e(k)  +[Holq ) 1e (k)
~—

unpredictable known at k-1

Ideal predictor  §(k,00) = Go(qg Hu(k) + [Ho(g™") — 1]e(k)
The prediction error for the ideal predictor ?
E(kv 00) = y(k) - g(k> 90) = G(k’)

The prediction error for the ideal predictor is white
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Structures with noise model

Parameterized output predictor : Since Gy and Hj are unknown and
e(k — 1) is not measureable, the following predictor is proposed.

§(k,0) = G(g~)u(k) + [H(g ") — e (k, 0)
which leads to the following prediction error :

e(k,0) = y(k)— z?(k‘G
= H Yq y(

/\
\_/
<

Important : If G and H have
the same structure as Gy and Hy,
and if G = Gy and H = Hj, then T‘i
the residual is white. If G = G but

H +# Hy, then the residual is uncorrelated H-1
with the input. l (k)
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*e(k)

1
Ao(g )
True model : H():Ao(:(lz_l) O(qn()k)
) [ B | @Y e

Ao(g™h) +

General predictor : §(k,0) = G(¢ 1 u(k) + [H(q™') — 1]e(k, 0)
General prediction error : c(k,0) = H (¢ Y [y(k) — G(g 1 )u(k)]
1
Alg™)

ARX predictor : §j(k,0) = igg_i;u(k) + [

Prediction error for ARX structure :

-1
£(08) = Al lyk) — 5 u()] = Alg™(b) - Bla )

The prediction error is linear w.r.t the model parameters

—1]e(k, 0)
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ARMAX structure
*e(k)

Co(g~")
Co(q™Y) Ao(g™)

True model :  Hy=

(_1)(k) Bo(q™Y) (k) W (@(k)
U o(q™ Yp
> Aol [ O >

General predictor : §(k,0) = G(¢ 1 u(k) + [H(q™') — 1]e(k, 0)
General prediction error : c(k,0) = H (¢ Y [y(k) — G(g 1 )u(k)]

ARMAX predictor : 5(k,0) = Bla 1)u(k‘) + [C(qil) —1]e(k, 6)

A(g™) A(g™1)
Prediction error for ARMAX structure :
“(0.0) = S Th) = G ulb)] = g (Al (k) = Bl yulh)]

The prediction error is nonlinear w.r.t the model parameters
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*6(@

gO(q_l)

-1 —

True model : Hy = g‘;iz_lg o(q n(;)
u(k) By(g™1) k) ++ y(k

General predictor : §(k,0) = G(¢ 1 u(k) + [H(q™') — 1]e(k, 0)
General prediction error : c(k,0) = H (¢ Y [y(k) — G(g 1 )u(k)]

: X B(g) C(q’l)
BJ predictor : y(k,0) = u(k) + —1|e(k, 0
Prediction error for BJ structure :
D(q ™) B(g™")

6(]{3,9) = C(q_l) [y(k) - A(q_l)u(k>]

The prediction error is nonlinear w.r.t the model parameters
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Bias distribution in the frequency domain

Parseval's relation

1 1 ("
Ral0)= Jim 5320 = 5 [ Bl

We recall the following relations : if y(k) = G(q~!)u(k), then

Byuls) = G(E5)B () |
Byy(w) = G(e™)Pyy(w) p = Byy(w) = |G(™) P Pru(w)
Py (w) = Puy(—w)

Spectrum of the prediction error for the OE structure

e(k,0) = [Go(g™") — Gla™H)]u(k) +n(k)

Dee(w) = [Go(e™) — G(7) PPy (@) + Prn(w)
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Bias distribution in the frequency domain

Bias distribution for the OE structure

. 1 [T . .
0 =argmin— [ [Go(™) = G(e,0) 2By (w) + B ()] o

2 J_,

e If G and (G have the same structure the minimum of the criterion is
obtained for 6 = 6.

e If G and Gy have different structure, a good approximation of Gy is
obtained where the spectrum of w is large.

e To have a better model in the frequency where |F'(e?%)| is large, the
input and output of the plant can be filtered by F(¢~!) before
minimizing the criterion.

I = argmin / ()2 [|Go(e) = G(e,0) 2D (w) + B ()] oo

™
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Bias distribution in the frequency domain

Bias distribution for the structures with noise model

e(k,0) = H (g {[Go(g™") — G(g™ )] u(k)

0= argmin — [ H 0P Go() = G, 0) ()
T

+ |Ho(e’%) — H(e¥, 0)]2@ee(w)]dw

v

e If G and H have the same structure and order as Gy and Hy, an
asymptotically unbiased estimate is obtained.

e If G and G\ have different structure, a good approximation is
obtained where the spectrum of u and |H~!(e/%)| are large. For
example for the ARX structure with H~! = A a good approximation
in HF will be obtained.
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Frequency analysis of PE methods

Bias distribution for the structures with noise model

0=nrgmino_ [ [H7H,0)Gole) — G, 6) PPy (w)
71- —T

+ |[Ho(¢’) = H(e",0) P @ee(w))dw

e If G and Gy have the same structure but H and Hj have different
structure, the parameters of GG are asymptotically unbiased if there is
no common parameters between G' and H (BJ structure). For ARX
and ARMAX the bias in noise model makes the parameters of the
plant model biased.

e If G and H are different with the structure of Gy and Hy, the plant
model G is typically better identified than the noise model H because
the spectrum of w is larger than the spectrum of noise.
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Comparison of different structures

ARX : simple structure, LS algorithm, questionable noise model,
typically gives biased estimates (asymptotically unbiased
estimates only when n(k) = e(k)/A or IV are used).

FIR : simple structure (no denominator), LS algorithm, no
noise model, unbiased estimate, OE is minimized, needs
too many parameters.

OE : nonlinear optimization (GN algorithm), no noise model,
asymptotically unbiased estimate, OE is minimized,
variance of the estimated parameters is not optimal.

ARMAX : nonlinear optimization (GN algorithm), noise model has
a common denominator with the plant model,
asymptotically unbiased estimates.

BJ : nonlinear optimization (GN algorithm), noise model
independent from plant model, asymptotically unbiased
estimates, more parameters to estimate.
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Closed loop identification

Why are we interested in closed-loop identification ?
e There are systems that are unstable in open-loop operation.
e The output drift occurs in some systems in open-loop operation.
e It is always better to identify an accurate model in the frequency
zone interesting for control.
Problems :

e u is correlated with noise via feedback, then the main assumption
for the structures without noise model is not met.

e Without an external excitation the information matrix may
become singular if the controller is of low order. For example, for
a proportional controller, the input and output of the system are
linearly dependent (u(k) = —Ky(k)) and the information matrix
becomes singular. This problem can be solved by changing the
controller parameters during data acquisition.
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Closed loop identification

Direct methods

The closed loop system is excited with an external signal and a PE method
using the structures with a noise model is employed for model
identification (ARX, ARMAX or BJ).

A necessary condition to obtain a consistent estimate for GG is that not
only G and Gy should have the same structure but also H and H

Instrumental Variables Method

otv(k) = [—ym(k = 1) ... —ynm(k —n) , upr(k —d)...upr(k —m)]

where :  yun(k) = Mi(qg Yye(k), une(k) = Ma(g)ye(k).
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Closed loop identification

Indirect method

First a model for the closed-loop system is identified then, knowing
the controller, the plant model is computed :

4y yk)  K(gHGolg™)
@)= 0@ =~ T2 K@ )Gola )
T
K(g Y[l —=T(g )]

G(g ") =

Properties :

e Order of G is typically too large.
(order of G > order of T > order of Gj)

e For the reason stated above, there is a possibility of pole/zero
cancelation in GG, so a model order reduction should be done.

e Controller should be known.
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Model Validation

@ Validation w.r.t the objective (control, simulation, prediction). If
the objective is met, the model is validated.
@ Validation based on a new set of experimental data.

Time domain validation : Compare the model output (identified
from the first set of data) with the measured output
(from the validation data).

Frequency domain validation : Compare the computed frequency
response of the model with the identified
nonparametric model (obtained by spectral analysis)
in the Bode diagram.

© Validation by statistical methods (verification of assumptions).

Whiteness of residuals : For ARX, ARMAX and BJ.
Independence of residuals and past data : For all structures.
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Model Validation

Whiteness test

For the structures with noise model (ARX, ARMAX and BJ) the residual
g(k,0) should be white, if the estimated parameters (for the plant model
and the noise model) are equal to the true parameters 6 = 6.

How can we test the whiteness of the residuals ?
We can compute the autocorrelation of e(k,8). If R..(h) =0 VYh #0
then e(k, ) is white.
However, this condition is never satisfied for a finite number of data.
o For finite number of data R..(h) Vh # 0 is a zero-mean random
variable if the estimate of the correlation function is unbiased.

@ We can compute a confidence interval around zero, if we know the
probability density function of R..(h) Vh # 0.

What is the pdf of R..(h)?
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Model Validation (Whiteness Test)

Theorem (Central limit Theorem)

Consider N independent random variables x1,xs, ..., xNn with mean p and

finite variance o® (with unknown distribution). Let T = N Z Zn, then
n=1

V/NzZy (for large N) converges in distribution to N'(uv/N, o2).

Take x5, = e(k)e(k — h) with h # 0 as a random variable and assume that
(k) is white. Then p = E{x,} = 0 and

0® = E{e*(k)e*(k — h)} = RZ(0)

Therefore, according to the central limit Theorem :
R ;N1
VN —hR..(h) = VN — hs— > e(k)e(k—h)  for h>0
k=h

converges in distribution to a Gaussian distribution with A (0, RZ.(0)).
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Model Validation (Whiteness Test)

o Knowing the distribution of R..(h), we can compute a confidence
interval with a given probability for it.

@ It is clear that .
iy = YN Bhec(t)
R..(0)

has a normal distribution A/(0, 1)

@ The central limit theorem is Valid for large N — h. In practice we
should have N > 100 and estimate the correlation functions for
h < 25.

o Therefore, If e(k, ) is white, then :

—
g YN ZhEL(R) o g << 95 N > 100

R..(0) -

for a probability of 0.95.
@ It does not mean that the probability of whiteness of 5(k,é) is 0.95.
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Model Validation

Cross-correlation test

For all structures the residual (%, é) should be independent of the past
inputs. A correlation between the reiduals and input shows that there
exists some information about the true system in the residuals, which has
not been captured by the model.

Confidence interval
If the output error is not correlated with the input signal then :

—
o VN -DEa() o fo 95 <h<25 N > 100

Rc(0)Ryu(0)
with a probability of 0.95.

It does not mean that the probability of the independence of s(k,é) and
u(k) is 0.95.
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Model Validation

Statistical validation tests
After a parametric identification based on the prediction error method, two
statistical validation tests are carried out in MATLAB :

@ Whiteness test for the residuals.

@ Cross-correlation test between the residuals and the past inputs.

@ If the cross-correlation test is satisfied then the plant model is
validated.

o If both tests are satisfied then the plant and noise model are validated
for structures with noise model (ARX, ARMAX, BJ).

@ For the OE and FIR structures, the whiteness test is irrelevant. The
model is validated if the cross-correlation test is satisfied.

To validate a model, several types of validation tests (statistical,
time-domain and frequency-domain) should be performed.
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Practical aspects of identification

A successful system identification depends on certain choices :

Sampling period : Choice of sampling period, anti-aliasing filter,
numerical problems.

Input design : Choice of excitation signal (step, impulse, sum of
sinusoid signals, PRBS, white noise, filtered white noise,
...), choice of magnitude, signal conditioning (scaling,
high and low frequency filtering).

Model structure : Choice of linear, nonlinear, state-space,
input/output (ARX, ARMAX, etc), and the order

selection for the plant and noise model (numerator,
denominator, time delay).
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Sampling Period

@ The condition of Shannon Theorem must be respected :
T

Ws > 2Wmax = Ts <

wmax
to avoid the aliasing effect. For physical system wy,ax is infinity. In practice,
there is always the aliasing effect. This effect can be reduced by an
anti-aliasing filter.

@ The sampling period should not be too small for two reasons :

e Numerical problems for computing the controller (all poles and zeros of
the model goes to 1).
e Implementation problem (control computation time < T5).

© In practice, if the model is identified for designing a controller, the sampling
frequency (or sampling time) is chosen as :

20wy < ws < 30 I <T, < Ir
) Ws w or — s < —
b b 10 5

where wy is the desired closed-loop bandwidth and T;. is the rise time of the
step response of the system. If wy, is not given, it is chosen equal to or
slightly greater than the open-loop bandwidth.
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Input design

How to design a PRBS :

© Choice of magnitude with a trade-off between signal to noise ratio and
system nonlinearity.

@ Number of data N should be large enough to filter out the noise (200 < N).

© The length of shift register n is related to the number of parameters in
model and desired frequency resolution. n is chosen greater than 6 to have
at least 32 frequency points excited. If system contains very low-damped
modes a greater n should be chosen.

© Number of periods is chosen such that 2 is satisfied.

© A PRBS can be enriched in low frequencies by using a frequency divider (the
clock frequency of the shift register is divided by D). A rule of thumb is :

length of the largest pulse in PRBS > settling time of the system

nD Ty > Taer

This rule should be used with caution because a large value of D¢ reduces
the frequency contents of PRBS in high frequencies.
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Input design

Signal conditioning :
@ Input and output should be scaled to have approximately the same
magnitude to avoid the numerical problems (otherwise the
information matrix or Hessian may be ill-conditioned).

@ Aberrant points should be detected and removed.
@ The mean value of input and output should be removed :

ulk) = welk) — S wek)  y(k) = welk) — 1 D welh)
k=1

@ Low-and high frequency disturbances should be removed from data by
appropriate data filter or by appropriate choice of structure of noise

model.
. -1 1- q_l . -7/
Low-pass filter L(¢~") = ——— witha ="/
1—aq™
: 1- :
High-pass filter L(¢™') = % with o = e~ T/77
1—aq™
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Structure selection

Estimate the structure (m, n, d) of a system using data

m : is the degree of B(q™1) = by +big™ ! + - + bng ™.

n : is the degree of A(¢™!) =1+ a1 ' + - +ang™™.

d : is the time between the application of the input and the first
“significant” reaction of the system. d is the number of zero
leading coefficients of B(q™t) (d > 1).

§ : is the order of the model G(2~ 1) = B(2~1)/A(z71),

0 = max(m,n).

Omax - IS an upper bound on the model order.
na : is the number of parameters in A(g™1) (na = n).
np : is the number of parameters in B(¢™!) (ng =m —d + 1).

ng : is the number of parameters to be estimated
(ng =NnA -+ nB).
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Structure selection

Estimation of model order §

Nonparametric Methods :

@ An oscillation in the step or impulse response corresponds to
6 > n > 2, two distinct oscillations give § > n > 4.

@ Each slope of -20 dB per decade in Bode diagram corresponds to one
simple pole of the plant model. Each resonance mode corresponds to
a pair of complex poles (6 > number of evident poles).

@ The rank of @ = YU in the subspace method (6 = rank Q).

Parametric Methods : By over-parameterization
@ Zero/Pole cancellation

@ Loss function evolution
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Model order estimation

Zero/Pole Cancellation

@ If 0 is chosen too large (the model is over parameterized), there will
be zero/pole cancellations in the model.

@ We choose ARMAX structure with d =1 and 6 = n = m = n.. Then,
for 6 =1,...,0max We identify a set of models.

@ For 0 > 4y (the true model order), there will be a common factor M
between A, B and C in the ARMAX identified models. Because if
Ay, By and Cj are the solutions of

Ao(a™)y(k) = Bo(g™ ulk) + Cola™)e(k)

then A = M Ay, B= MBy and C' = MCj will be also a solution of
the ARMAX equation.

@ Can we use ARX structure to verify zero/pole cancellation ?
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Model order selection

Zero/Pole Cancellation

@ The zero/pole map of each model can be inspected for possible
existence of zero/pole cancellation.

e Each zero/pole cancellation indicates that the order of the model is
overestimated by 1.

@ In the presence of noise, the variance of the poles and zero and a
confidence interval around each pole and zero should be computed.

@ An intersection between the confidence interval of a pole and that of
a zero indicates an overestimation of the model order.

@ The model order is the maximum value of § for which there is no
zero/pole cancellation.

Question : Can we avoid cancellation of true poles and zeros which are
close to each other (like resonance and anti-resonance modes in
mechatronic systems) ?
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Model order selection

Loss-function evolution :

Loss function is the mean value of the optimization criterion evaluated at the
estimated value.

N

1 o

Lf(éa N) = N 262(kv9)
k=1

@ For ARX structure L(d, N) is a monotonically nonincreasing function with
respect to & (why?).

@ Taked=1and 6 =n =m. Then, for § = 1,...,dmax We identify a set of
models.

@ For § > dp (the true model order), the loss function will not change
significantly. The over parameterization is used for modelling the realization
of noise and not the model behaviour.

@ By inspecting the evolution of the loss function, we can find a rough
estimate of the model order at which the decrease of the loss function is not
significant.
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Model order selection

Loss-function evolution :

In order to have a quantitative criterion for model order selection, a penalty term
can be added to the loss function :

Cy(6,N) = Ly (5, N) + S(8,N)

A 09(67 N)
AIC = L¢(,N)+ %5](71) ' __ Global criterion

—__ Penalty term
_._.. Loss function

BIC = Lf(a,N)Jr‘“O]gvﬂ
2
cic = M(d,N)#”%(N) \
- 1+6/N AN
FPE = Lf(‘s»N)m ___________ Sz

These methods usually give an over estimation of the model order!
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Structure selection

Estimation of time delay d :

e Time-delay can be estimated by an FIR model with d =0 (or d =1
since we know that by = 0) and m = myax.

@ The first coefficients of B(¢~') which are close to zero (considering
their standard deviations) represent the time delay. If by is zero, we
have the following property with a probability of 0.95 :

0e [bk—QO'k, bk—I—QO'k]

o FIR is preferred because it is unbiased and use LS algorithm (global
optimal solution).

@ For oscillatory systems, where m is large, the variance of the
parameters will be large so FIR will not be a good choice.

@ Other structures like OE or ARMAX with order ¢ can also be used
and the first coefficients of B(q~!) inspected.
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Estimation of n and

Structure selection

@ Take m = § and d equal to the estimated value and identify ARX models for
n=1,...,0, and use the loss function method to estimate n.

@ Take n and d equal to the estimated values and identify ARX models for
m=d,...,0, and use the loss function method to estimate m.

@ Check the variance of a,, and b,, and compute a,, = 20 and b,, &+ 20. If zero
belongs to these intervals, it shows an overestimation of n and m.

@ In Matlab, n4,np and d are estimated all together using the loss function
method. First the following intervals are chosen :

na € [nAmin ) nAmax] , NB € [anin ) anax] , de [dmin7 dmax]

Then, a set of models concerning all combinations of values in the intervals
are identified using the ARX structure. The number of parameters will
increase from nAmin + 75, to N4, + 7B Next, the lowest loss
function for each number of parameters is plotted versus the number of
parameters in the model. From the evolution of the loss function, the
number of parameters of numerator, denominator and d will be selected.

min max *
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Identification Procedure

Impulse or Step response
— Delay, time-constant
— N
—» Sampling period

|

1
Excitation signal u(t)
— Input spectrum
—+ Signal magnitude
— Experiment time

variance

Experiment

Experiment

Order estimation

— Loss function analysis (ARX, IV)
— Zero/pole cancellation

— Time-delay estimation

Increase the order n,m,d

Model structure
— ARX, ARMAX, BJ
— OE

— State-space

l 0,(k,0)

Model validation
— Time-domain

— Frequency-domain
— Statistic

arametric Id




Optimization Algorithms

How to minimize the fit criterion ?

N
é:argmmJ Zs (k,0) :Z k,0)]?
k=1

k=1

For FIR and ARX structures this leads to the linear LS algorithm. For
other structures, nonlinear optimization algorithms should be used.

@ Pseudo linear regression algorithm : Reformulate the output
predictor as a pseudo linear regression (i.e. §(k) = o (k,0)0) and
solve it iteratively.

o Gauss-Newton algorithm : Initialize 6 with LS algorithm. Compute
the gradient J' and Hessian J” of the criterion. Use the following
algorithm :

Ois1 = 0; — [J"(6:)) " T (6:)

@ Recursive algorithms : Solve the LS algorithm by a recursive

formula. Appropriate for on-line parameter estimation.
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Pseudo linear regression algorithm

Example (OE structure)

B =1
The output predictor is given by :  g(k,0) = (q_ )u(k)

It can be rewritten as :

g(k79) = _alg(k - 1’9) - Cln’lj(k' -, 0)
+bqu(k — d) + - + bpu(k —m) = ¢ (k,0)0

where 07 =[ay,...,an,bq,...,by] and

oL (k,0) = [—g(k —1,0),...,—j(k —n,0),u(k —d), ..., u(k —m)]
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Pseudo linear regression algorithm

Example (ARMAX structure)
The prediction error for the ARMAX structure can be rewritten as :
1

e(k,0) = W[A(q‘l)y(k) — B(g Mu(k)]
= yk)+aylk—1)+ - +apylk —n) —bgu(lk —d) —---
—bnu(k —m) —cie(k—1,60) —--- — cpe(k — ne, 0)
= y(k) — ¢ (k,0)8
where 07 =[ay,...,an,bq,...,bm,C1,...,Cp,] and
oL (k,0) = [—y(k —1),...,—y(k —n),u(k —d),...,u(k —m),

e(k—1,0),...,e(k —nc,0)]

A N A A~ —1 N A~
= Oiy1 = [Z ¢ (K, 9i)¢£(k,9i)] [Z ¢ (K, Qi)y(k)]
k=1

k=1
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Optimization algorithms

Gauss-Newton algorithm

Zs (k,6) Z [y(k) — 9(k,0)]> = Oipr = 0: = [J"(0:)] T (6:)

k=1

Computing the gradient :

J(9) = 9J = —2§:agjs(k 0) = —2%@&(1{; 0)e(k,0)
00 — 06 "’ — ’ ’
Computing the Hessian :
827 al N
" _ T
J'(0) = =po57 = ;[ Pk, )07 (k, 0) — S pe(k, a)]

N
~ 23wk, 0)67 (k. 0)

k=1

where 1 (k,0) = 0y/060 should be computed for each model structure.
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Gauss-Newton algorithm

Example (Compute ¢ (k, ) for the OE structure)

The output predictor is given by :

bag ™+ +bmg™™

i(k, 0) = k) = 2
y(k,0) l+aig i+ +ang™

oy q" B 1
ab; A(q‘l)u(k) -~ A(gY)
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Asymptotic covariance of the parameter estimates

What is the covariance of the parameter estimates ?
@ Assume that 6 converges to 6* when N goes to infinity.
@ Taylor expansion of J'(6) = 0 around 6* gives :

J'(0) =~ J'(0%) + J"(0°)0 —6") =0
=0—0*=—[J"6)] (6
e Then, cov(d) = E{(G 0*)(0 — 6*)T} is given by :
cov(0) = E{[J"(6") ' J'(0*) " (0*)[J"(6")] '}
o If £(k,0*) is white with variance o2, then under some mild R
assumptions J'(6*)J'7(6*) = o2J"(6*). Replacing 6* with 6 :

cov(f [Zw (k,0)1 )] N

e Using the central limit theorem v/N(# — 6*) has a zero-mean
Gaussian distribution (for large V).
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Recursive least squares algorithm

For on-line identification of time-varying systems

Parameter estimates at instant & :
-1
k

k
O = [Z ¢<z‘>¢T<z‘>] > liyi)

Problem : Too much computation at each sampling interval
Solution : Using recursive algorithm (compute ;11 as a function of 0y)

k k -1
Op = Py Y o(i)y(i) where Py = Z¢(i)¢T(2)]
i=1 i=1
k+1 k
Pl = ) o)e” Z¢ ()" (1) + ¢(k + 1)¢" (k + 1)
i=1

= P l+o(k+ 1)¢ (k+ 1)
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Recursive least squares algorithm

k+1

Opir = Pk+1z¢ = P Z¢ i)+ ok +1)y(k+1)

= Pk+1[ 0k + ok + 1)y(k +1)]

= P[P}y — ok + 19" (k+ D)0y + Pryrd(k + Dy(k +1)
= O+ Pop1¢(k + 1) [y(k + 1) — ¢ (k + 1)0]

= O+ Pop1¢(k + De(k +1)

Matrix inversion lemma

(A+BCD) ' =A!' - A 'B[C"'+ DA 'B]"'DA™!
To find the inverse of Pk+1 =P+ ¢(k+1)¢T (k + 1), take
A=P ', B=¢(k+1),C=1, D= ¢"(k+1) which leads to :
Pep(k + 1)¢T (k+ 1) Py
1+ ¢T(k+1)Ped(k +1)

Pry1 =P, —
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Weighted least squares algorithm

Suppose that errors in different instants have different importance
(e.g. old errors has less importance in time-varying systems).
Weighted error is defined as :

Ew = WI[Y — 0]
W is a weighting matrix (usually diagonal). The criterion becomes :
J(0) = ELEw = ETWITWE = [Y — 00" WTW]Y — &6
and the vector of parameters :
0= @ W'wae) 'oTwIwy
WIW =diag AV A2 AN 0.9 < A <0.99
The last error is weighted by A\° = 1 and the first error by AN "1 ~ 0.

A is called forgetting factor (facteur d'oubli).
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Recursive weighted least squares

k k

O, = [Z ¢(i)Ak—i¢T(z’)] D oONTY (i) = P Y i)\ Ty ()

i=1 i=1

Pl =AP 4 o(k+ 1o  (k+1)

e For A =1 (without forgetting factor) the trace of adaptation gain
Py11 goes to zero when k goes to infinity (the algorithm becomes
insensitive to parameter variations).

e For A < 1, the trace of P does not converge to zero and the
algorithm remains alive w.r.t parameter variations.

The recursive algorithm using the matrix inversion lemma is given by :
1 Peo(k+ 1ot (k+ 1) P,
Y A+ ¢T(k+1)Pyp(k + 1)

k

D1 = O+ Pop1o(k+ Dy(k + 1) — ¢7 (k + 1)6;]
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Recursive least squares algorithm

Initialization : There are two ways for initializing the algorithm :

© The initial values are fixed a priori. In general, éo =0and Py = al,
where « is a large value multiplied by the number of parameters p,
say a = 1000p, and I is the unity matrix. Because P is an initial
estimate of the covariance matrix of the parameters. Since the initial
value is far from the true one, a large covariance matrix is chosen.

@ The recursion starts after p sampling period. At iteration p, 9}, is
estimated by solving a system of linear equation as :

ép = CI’;lY}) ;o Pp= [(I);SF‘I)p]_l

where
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Recursive least squares

Example (Time invariant system)

o o o 101T T
y(k) +ajy(k — 1) = bju(k — 1) + eo(k) 0o = [a] b7]" = [-0.5 0.5]
u a) y b)
. 2
05 1
0 0
05 1
-1 2
0 200 400 600 0 200 400 600
1 5 ) : P Pia=Py Py Q)
05 rmﬂ._ﬁf—«b%« S
06
0
2 04
a
A 0.2
-1 0
0 200 400 600 0 200 400 600
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Recursive least squares

Example (Time variant system (without forgetting factor))

T
. [—0.5 0.5] . k < 200
= pour
(0.5 —0.5)7 k > 200
u a) y b)
1 2
0.5 1
0 0
-0.5 1
-1 >
0 200 400 600 0 200 400 600
; [} ©) ; Py Pp=Py Py @)
05 . 0.8
0
0.4
-0.5 KL 0.2
a
-10 200 400 600 00 200 400 600
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Recursive weighted least squares

Example (Time variant system (with forgetting factor A = 0.97))

o { [~0.5 0.5]7 o F<200
(0.5 —0.5)7 k > 200
u a) y b)
1 2
0.5 1
o G
05 A
; 0 200 400 600 -20 200 400 600
) 6 ) . Py, Pp=Py, Py d)
0.5 R 2
0 ’ 1
0.5 A 0
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|dentification of Nonlinear Systems

Grey-box Identification

In this approach, some physical insight is available (e.g. a first principle
model). Then the model parameters are identified by minimizing the
prediction error. The prediction error may be linear in parameters that
leads to a LS problem or it is nonlinear that leads to a nonlinear
optimization method.

Black-box Identification
In this approach, no physical insight is available. Then we choose a model
structure which has good flexibility to cover approximately a large class of
nonlinear behaviour. A typical choice is a linear combination of basis
functions that can approximate any nonlinear function when the number of

bases increases.
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Grey-box Identification

Example (Linear regression problem)

consider a nonlinear model given by :
y(k) = aou(k — L)y(k — 1) + foy*(k — 2) + n(k)
The output predictor is given by : i(k) = ¢ (k)6 where
¢T(k) = [ulk = Ly(k—1) y*(k-2)] ., 6" =[a 5

Then the system parameters can be identified by the least squares method

v

@ If § = 0, the residuals will be equal to n(k) (uncorrelated with u(k)). So
the uncorrelation of the residuals and u(k) can be used as a validation test.

@ A noise model can be considered with n(k) = H(q ')e(k). In this case the
predictor will be
(k) = au(k — Dy(k — 1)+ By*(k — 2) + [H(¢™") — Le(k)

and whiteness of the residuals can be used for the noise model validation.
Spring 2025
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-box ldentification

Identification of robotic arms : The model of a robotic arm using the
Euler-Lagrange method is given by :

M(q)i+C(q,9)q+Glq) =7

n Number of joints
q e R™¥1 Joint angles
M(q) € R™™™  Inertia matrix
C(q,q) € R™*™  Coriolis matrix
G(q) € R™*! Gravity vector

T e R*x1 Torque vector

Procedure : The excitation signals are added to the joint torques and the
joint angles g, joint speeds ¢ and joint accelerations § are measured. Then
the parameters of the matrices M, C and G can be identified with the
least squares algorithm.
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Grey-box Identification

Example (ldentification of a two-link planar robot)

The dynamic model of the system can be obtained as :
[Mu M12][d1]+{011 012][(1'1]:[7‘1]
Moy Moo Go Co1 0 G2 T2
M11 = Il + IQ -+ mlrf -+ mg(l% -+ T%) -+ 2m2l1'r2 COS(QQ)

My = Moy = Iy 4+ maor3 + malyro cos(go)

Msy = I + mor3

C11 = —gamalire sin(ga)
Ci2 = —(q1 + ga)malira sin(qz) b
. . /7a
Ca1 = imalira sin(ge)
Co =0 ‘
ale-l-IQ-l—mlr%-l-mg(l%-l—r%), B = molyra, 'yzlg-l—mgr%
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Grey-box Identification

Example (ldentification of a two-link planar robot)

Therefore, the model in linear regression form will be :

[¢11(k3) ¢12(k)  ¢13(k)
0 ¢22(k) ¢a3(k)

where for each instant k :
dri=d  d12 =[2G + 2] cos(q) — [dads + df + d3) sin(ga)
$13 = G2 $a2 = 1 cos(gz) + 47 sin(g2) $23 = G1 + G

Remarks :
@ LS algorithm can be used to identify «, 8 and v and to compute M
and C' that can be used in simulation or for controller design.
@ The physical parameters are not identifiable. However, if we know
some of them we can find the others.
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Black-box ldentification

For any nonlinear system the output predictor can be given by :

Q(k, 0) = F(¢(k)v 0)

where F' is some nonlinear function of 6 and ¢(k).

Similar to the black-box models for linear systems, we can define :
NFIR : The regressor vector will use only past inputs u(k —1),1 > 0.
NARX : The regressor will use past inputs u(k — ) and past outputs
y(k —1).
NOE : The regressor will use past inputs u(k — ) and past predicted
output gy(k —1,0).
NARMAX : The regressor will use past inputs u(k — [), past outputs
y(k — 1) and past prediction errors e(k — [, 0).
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Black-box ldentification

Basis functions : F'(¢(k),0) can be well approximated using some basis
functions :

F(¢(k),0) = Z@ﬂ(«b(kz))

Bias-Variance Trade-off : When n — oo any nonlinear function is
approximated with the basis functions but increasing n increases the
variance of the parameters.

Choice of F; : It can be chosen using a single parameterized mother basis
function denoted by P(x).

Mother basis functions : Typical functions are
@ piecewise-constant pulse function
@ Gaussian function

@ Sigmoid function
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Black-box ldentification

Example (Piecewise-constant pulse function)

P(z) = {

Any nonlinear function F'(x) can be approximated by :

1 for0<z<A
0 otherwise

F(z) =) 6:;P(z —iA)
=0

where 0; = F(iA) and Fj(z) = P(z —iA).
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Black-box ldentification

Example (Gaussian function)

1 _@
(& 20
o\ 2w

Any nonlinear function F'(x) can be approximated by :

F(z) =) 6:P(z — )
=1

Px) =

The parameters of the Gaussian function ; = [p; 0;] should be chosen a
priori or be optimized together with 6.

aaaaaaa
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Black-box ldentification

@ The model parameters are obtained as :

N

0= i k) — 0, F;(p(k

argg{lﬁnkz_l ly(k) = 0:Fi((k), B)]

@ ¢(k) is chosen based on some a priori knowledge about the system. If
no information is available a high dimension ¢(k) may be considered
that complicates the optimization problem.

@ A basis function like Gaussian function, wavelet, sigmoid, etc should
be chosen.

o If the parameters of the basis function are fixed (defined by user), the
optimization becomes a least squares problem, otherwise a nonlinear,
gradient-based, numerical optimization should be solved.

@ In order to consider the bias-variance trade-off a new term A||6|| can
be added to the fit criterion, such that bias and variance are
minimized together.
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Black-box ldentification

Neural Network models : Neural network is a very general black-box
model structure based on convolving basis function expansions. It consists
of input layer, hidden layers and output layer. Each layer includes some

nodes. The output of each node is a function (called activation function)
of the sum of its inputs.

input layer hidden layer 1 hidden layer 2 output layer

Neural Network models can be used for modelling of very complex
nonlinear systems.
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Neural Network Models

Example (ARX model)

Consider the following simple neural network model with no hidden layer :

W/
L

The output of the NN model is : ”
z = wiy(k) + wau(k)
which corresponds to a simple ARX model with

y(k +1) = aoy(k) + bou(k)

if we take z = y(k + 1), w1 = ag and wy = by.
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Neural Network Models

Example (NARX model)

Consider the following simple neural network model with no hidden layer :

yiyket)
A

(z)—2
The output of the NN model is :
z =wiy(k)y(k — 1) + wau(k)y(k — 2)
which corresponds to a simple NARX model with
y(k +1) = aoy(k)y(k — 1) + bou(k)y(k — 2)

if we take z = y(k + 1), w1 = ag and wy = by.
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Neural Network Models

Feedforward Neural Network :

h; is the basis function and

z; €{y(k), - ,y(k —n),u(k), -,
u(k - m)a y(k)27 e 7y(k - ’I’L)2,
’U,(k)Q, o 7u(k - m)27 y(k)u(k:),
L y(k —n)u(k —m)}

S; :iwjvji (vji are known weights)
j=1

p
z :Zwihi(si) +b= wTH

=1
N -1 N
W= (Z HkaT> > Hyy(k+1)
k=1 k=1
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Neural Network Models

Recurrent Neural Network : Instead of using input and output data

(u,y) as in feedforward NN, input and predicted output (u,7) data are
used in NN :

zi €{g(k), -, 9(k —n),u(k),-- -,
u(k —m), (k)% - gk —n)?,
u(k)?, - su(k —m)?, gk)u(k),
gk —nju(k —m)}
G(k+1) = WTH,(W),NOE!

[terative Gauss-Newton solution :

Wi =W, +7 (ZHk i) Hy, (W)> ZHk(W €
k=1

k=1
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Neural Network Models

Activation Functions : Typical activation functions are :

sigmoid function

1

fs =
1+e*
0 sigmoid

1
08 G'(Z) T lte

Parametric Identification (Chapter 3)

tanh function Rectified linear

et _ T activation unit (ReLU)
fe= €T L e .
o 0, ifz<0
- tann R™ z, ifz>0

ReLU activation function
x8(x)
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Neural Network Models

NN training using back propagation (gradient descent) algorithm :
Optimizing W

Xt/ N viy // h 1 2 1 7)?
LN \ Z |hy =35 -5 B
o j\ E=ge=5y—19)
z”—» @—_Eﬁ—h(s)
. /\/: oy~ ow
4>‘\ J Va2 \2\:[?2/" 8E — 8E ay = —h (S )E
Dy og oy !
81 = D111 + V2122 OF h ( )
= — S9 )€
8o = 1021 + V22T2 Dy o
g = w1hi(s1) + waha(s2) 8{5 =—He
T ow
=W 1H o W W y oF W Yy He
i1 = Wi =0 = Wi
(s) 14+e5" Os () (=)
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Neural Network Models

NN training using back propagation (gradient descent) algorithm :
Optimizing V'

1 1,

Lﬂ — v 1/2}11\; E = 5{_:2 _ 5(y _ y)
(z )} 0y "Ohy V00
N/ AN / OE _ OFE 8y Ok 9s1.
L ;zlhz; Do, . 07 Ohy 95y Doy
o e = —z1wW1(0h1/0s1)e
$1= 01121 + V2122 OF [Db91 = — oty (Ohy /Ds1)e
$2 = V1271 + U22%2 OF /9ty = —x1102(Oha/0s2)e
g = wrihi(s1) + aho(s2) OF /tgs = —watia(Ohs D2 )e
=Ww'H OEJOV = —X(W o Dy)Te

V11 V12 Oh1 Oho oF A T
V = Dy =|—— —= Vier =Vi—y=—==V;+~yX(W
|: :| ) H |:981 982 i+1 i EV i X( ODH) I
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Neural Network Models

Some basic terminology : Given the number of input/out data N, the
prediction error criterion can be defined as :

SEPLEEINIC

k=1 k=1

l\D\
l\.’)\r—t
@)
\_/
o

@ An epoch is one complete training pass over the whole data set (all
weights are converged).

@ Batch : When divide data set into number of sets or parts, each set or
part is a batch; A batch is used for one gradient update.
@ Iteration An iteration consists of updating the gradients on a single
batch of data;
@ Batch size : Total number of data, m, present in a single batch;
e Batch gradient descent : m = N, smooth convergence;

e Stochastic gradient descent (SGD) : m = 1, fast speed for large data;
e Mini-batch gradient descent : 1 < m < N ;
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