
Nonparametric models

Parametric models : Transfer functions and state-space models

G(s) =
K (s + 1)

(s + 3)(s + 5)
; G(z ) =

z 2 + 2z + 3

z 3 + 3z 2 + 3z + 8

Nonparametric models : Graphs, data, etc.
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Parametric versus Nonparametric Models

Parametric models :

⌣̈ Suitable for controller design, simulation, prediction etc.

⌣̈ Different types of representation can be computed easily.

⌢̈ Needs a priori assumptions about the model structure.

⌢̈ Model parameters are the result of an optimization.

⌣̈ Measurement noise can be filtered out in the optimization procedure.

Nonparametric models :

⌣̈ Simple and fast, needs a few a priori information.

⌢̈ Generally, no optimization is required. So, measurement noise comes
directly to the model and cannot be filtered out by optimization.

⌣̈ Suitable for controller design methods (PID, loop shaping, robust).

⌢̈ Give only some general ideas about the system (bandwidth, order).

Nonparametric models are necessary for parametric
identification
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Nonparametric Identification methods

Time-domain methods :

Step and impulse response are identified.

Transient response (step and impulse inputs)

Deconvolution method (any input signal)

Correlation approach (random signal)

Frequency-domain methods :

Frequency response is identified.

Frequency analysis (sinusoid signal )

Fourier analysis (any input signal)

Spectral analysis (random signal)
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Transient response

Step response : A step signal of amplitude α is applied to the plant.

System should be in a stationary state.

Noise level should be measured.

How α should be selected ?

Sampling period should be chosen as small as possible.

Identify a simple parametric model from step response :
First order model :

G(s) =
γ

τs + 1

Theoretical step response

y(t) = K (1− e−t/τ )

⇒ γ = K/α
0

K

0 τ t
1 t

1
+τ
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τ τ
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t
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Step response

Identify a simple parametric model from step response :

First order model with delay (Ziegler-Nichols) : G(s) ≈ γe−θs

τs + 1

K

0 t

θ + τθ

y
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Step response

Identify a second-order model from step response :

G(s) =
γω2

n

s2 + 2ζωns + ω2
n

y(t) = K − K

β
e−ζωn t sin(ωnβt + θ)

β =
√

1− ζ2 θ = arccos ζ

Identification procedure :
1 Measure K and compute γ = K/α.

2 Measure tp and y(tp) and compute the overshoot Mp =
y(tp)−K

K
3 Compute the damping factor Mp = e−ζπ/β ⇒ ζ2 =

ln2(Mp)

π2+ln2(Mp)

4 Compute the natural frequency ωn =
π

tpβ
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Impulse response

Relation between g(k) and g(t)

δ(k)

0 0

1 1

δ(k) δ(t)δ∗(t)

T 2T kT t tT T

Surface = T Surface = 1

∞

δ(k) δ*(t) g*(t) g(k)

G(z)

N/A G(s) A/N

 

δ(t) g(t) g(t)
kTG(s) A/N

 

lim
T→0

1

T
g∗(t) = g(t) ⇒ g(k) ≈ Tg(t)

∣∣
kT
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Impulse response

It is impossible to apply the Dirac impulse, δ(t) to a system.
The impulse response, g(t) is the derivative of the step response.
A scaled Kronecker delta, αδ(k), can be applied to a discrete-time
system.
Then , the discrete-time impulse response is given by :

g(k) =
1

α
g∗(t)|kT

If y(k) is the step response of a step of amplitude α, then :

g(k) =
1

α
[y(k)− y(k − 1)]

The impulse response g(t) is given by :

g(t) ≈ 1

αT
g∗(t)

What can we do if the noise level is high ?
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Numerical deconvolution

Use any input u(k) and compute g(k) from the convolution sum :

y(k) = g(k) ∗ u(k) =
k∑

j=0

g(j )u(k − j ) k = 0, 1, 2, . . . ,N − 1

y(0) = g(0)u(0)
y(1) = g(0)u(1) + g(1)u(0)
y(2) = g(0)u(2) + g(1)u(1) + g(2)u(0)
...

g(k) can also be computed recursively, note that u(0) ̸= 0 :

g(k) =
1

u(0)

y(k)− k−1∑
j=0

g(j )u(k − j )

 k = 0, 1, . . .N − 1

The approach is too sensitive to numerical errors, unless for some specific

inputs. If u(k) is a unit step : g(k) = y(k)−
k−1∑
j=0

g(j ) = y(k)− y(k − 1)
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Numerical deconvolution

In the matrix form, we have :
y(0)
y(1)
...

y(N − 1)

 =


u(0) 0 · · · 0
u(1) u(0) · · · 0
...

...
...

u(N − 1) u(N − 2) · · · u(0)




g(0)
g(1)
...

g(N − 1)


Y = UΘ ⇒ Θ = U−1Y

Remark : The asymmetric Toeplitz matrix U is ill-conditioned so Θ
cannot be computed.
There are two solutions to this problem :

1 Find the finite impulse response : If the length of impulse response is
finite K ≪ N , the number of unknowns, g(k), can be reduced (N
equations, K unknowns) and so the problem can be solved in the
least square sense.

2 Regularization (Bias-Variance Trade-off) : When U is close to
singular the norm of Θ = U−1Y will go to infinity. A solution is to
minimize the norm of Θ in the least squares solution as well.
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Numerical deconvolution

Find the finite impulse response : For stable systems (without
integrator), impulse response goes asymptotically to zero such that we can
suppose g(k) = 0 for k > K . Then, we can write :

y(0)
y(1)
...

y(N − 1)

 =


u(0) 0 · · · 0
u(1) u(0) · · · 0
...

... · · ·
...

u(N − 1) u(N − 2) · · · u(N −K )




g(0)
g(1)
...

g(K − 1)


or Y = UKΘK , where UK and ΘK are the truncated version of U and Θ.
Now, the number of equations, N , is more than the number of unknowns
K (i.e. UK is a N ×K dimensional matrix). This problem can be solved in
the least squares sense by computing the pseudo inverse of UK :

ΘK = U †
KY = (UT

K UK )−1UT
K Y

Nonparametric Identification (Chapter 2) System Identification Spring 2025 11 / 44



Numerical deconvolution

Regularization (Bias-Variance Trade-off) : Consider a modified least
squares criterion as :

J (Θ) = ETE + λΘTΘ

where E = Y −UΘ, and λ is a weighting factor for bias-variance
trade-off. Then we have :

∂J

∂Θ
= −2UTY +2UTUΘ+2λΘ = 0 ⇒ Θ = (UTU +λI )−1UTY

A non zero λ makes UTU + λI a regular matrix, which is invertible and
leads to a finite norm Θ.

A good value for λ can be found by trial and error. Usually, we should
have an idea about the length of impulse response to find a good
value for λ.
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Correlation approach

Cross-Correlation Function

For stochastic signals x (k) and y(k) is defined as

Rxy(h) = E{x (k)y(k − h)} = lim
N→∞

1

N

N−1∑
k=0

x (k)y(k − h)

Independence

If x and y are independent :

Rxy(h) = E{x (k)}E{y(k − h)}

In addition, if one of them has zero mean :

Rxy(h) = E{x (k)y(k − h)} = 0 ∀h
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Correlation approach

Properties of the correlation functions

Rxx (h) = Rxx (−h) ; Rxy(h) = Ryx (−h) ; |Rxx (h)| ≤ Rxx (0)

The first two properties can be proved by defining k ′ = k − h :

Rxx (h) = E{x (k)x (k − h)} = E{x (k ′ + h)x (k ′)} = E{x (k ′)x (k ′ − (−h))}
= Rxx (−h)

Rxy(h) = E{x (k)y(k − h)} = E{x (k ′ + h)y(k ′)} = E{y(k ′)x (k ′ − (−h))}
= Ryx (−h)

The last property can be proved using E{[x (k)± x (k − h)]2} ≥ 0

⇒ E{x2(k)} ± 2E{x (k)x (k − h)}+ E{x2(k − h)} ≥ 0

⇒ Rxx (0)± 2Rxx (h) + Rxx (0) ≥ 0 ⇒ −Rxx (0) ≤ Rxx (h) ≤ Rxx (0)

⇒ |Rxx (h)| ≤ Rxx (0)
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Correlation approach

Principle : The noisy output of an LTI system is given by :

y(k) =
∞∑
j=0

g(j )u(k − j ) + d(k) = g(k) ∗ u(k) + d(k)

Take u(k) as a random signal independent of the zero-mean d(k).
Multiply y(k) by u(k − h) and take the expected value :

E{y(k)u(k −h)} =
∞∑
j=0

g(j )E{u(k − j )u(k −h)}+E{d(k)u(k −h)}

Ryu(h) =
∞∑
j=0

g(j )Ruu(−j + h) + Rdu(h)

Note that Rdu(h) = 0, therefore :

Ryu(h) =
∞∑
j=0

g(j )Ruu(h − j ) ⇒ Ryu(h) = g(h) ∗ Ruu(h)
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Correlation approach

Removing the noise effect

Input/output relation : y(k) = g(k) ∗ u(k) + d(k)

Auto/cross-correlation relation : Ryu(h) = g(h) ∗ Ruu(h)

g(h) can be computed using the numerical deconvolution

Main problem : How to estimate the correlation functions ?

Example
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Estimation of the correlation functions

Autocorrelation function (biased estimate)

R̂uu(h) =
1

N

N−1∑
k=h

u(k)u(k−h) , R̂uu(−h) = R̂uu(h) , h = 0, 1, 2, . . .

This estimate is biased because :

E{R̂uu(h)} =
1

N

N−1∑
k=h

E{u(k)u(k − h)} =
N − h

N
Ruu(h) ̸= Ruu(h)

Autocorrelation function (unbiased estimate)

R̂uu(h) =
1

N − h

N−1∑
k=h

u(k)u(k − h) , R̂uu(−h) = R̂uu(h) , h = 0, 1, 2, . . .
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Correlation approach

Example

Autocorrelation function estimate of a zero mean discrete white noise e(k)
with N = 500.

Biased estimate Unbiased estimate

R̂ee(h) =
1

N

N−1∑
k=h

e(k)e(k − h) R̂ee(h) =
1

N − h

N−1∑
k=h

e(k)e(k − h)
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Correlation approach

Cross-correlation function (biased estimate)

R̂yu(h) =
1

N

N−1+min(h,0)∑
k=max(h,0)

y(k)u(k − h) , h = 0,±1,±2, . . .

Cross-correlation function (unbiased estimate)

R̂yu(h) =
1

N − |h|

N−1+min(h,0)∑
k=max(h,0)

y(k)u(k − h) , h = 0,±1,±2, . . .

Impulse response estimation

If u(k) is white noise :

Ryu(h) = g(h) ∗ δ(h)Ruu(0) = g(h)Ruu(0) ⇒ g(h) =
R̂yu(h)

R̂uu(0)
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Correlation approach

Impulse response estimation

If u(k) is not white, numerical deconvolution can be used. It is assumed
that for j ≥ K we have g(j ) = 0.

Ryu(h) =

K−1∑
j=0

g(j )Ruu(h − j ) h = 0, 1, 2, . . .

R̂yu(0) = R̂uu(0)g(0) + R̂uu(−1)g(1) + · · ·+ R̂uu(−K + 1)g(K − 1)
R̂yu(1) = R̂uu(1)g(0) + R̂uu(0)g(1) + · · ·+ R̂uu(−K + 2)g(K − 1)

...


R̂yu(0)

R̂yu(1)
...

R̂yu(K − 1)

 =


R̂uu(0) R̂uu(1) · · · R̂uu(K − 1)

R̂uu(1) R̂uu(0) · · · R̂uu(K − 2)
...

...
...

R̂uu(K − 1) R̂uu(K − 2) · · · R̂uu(0)




g(0)
g(1)
...

g(K − 1)


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Frequency-domain methods

Frequency analysis

The input signal is a sinusoidal signal which leads, in
steady state, to a sinusoidal output.

Fourier analysis

A deterministic signal, preferably periodic, that excites a
large number of frequencies (sum of sinusoids or PRBS) is
applied as input.

Spectral analysis

The input and output of the system are considered as
stochastic signals (input is a random process and the
output is affected by measurement noise).
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Frequency analysis

Processus

RA(ω)

ϕ(ω)

-5 0 5 10 15 20

Asin(ωt) A'sin(ωt+ϕ)

ω
[rad/s]

-90°

-180°

0 °

ϕ

[ °]

ω
[rad/s]

1

RA

[-]

RA(ω) =
A′

A
= |G(jω)|

φ(ω) = arg[G(jω)]
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Frequency analysis

Cautions

• Frequency range should cover at least 2 or 3 decades with more
than 10 frequency points per decade.

• The magnitude of input signal should be chosen regarding the
noise level and system nonlinearity.

• The measurements should be done in steady state.

Advantages and disadvantages

⌣̈ Simple and intuitive.

⌣̈ Needs only a few a priori information about the plant.

⌢̈ The experimentation time is too long especially for slow systems.
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Fourier analysis

G(jω)

u(t)

t
0

y(t)

t
0

Principle : For LTI continuous-time systems, we have :

y(t) =

∫ ∞

0
g(τ)u(t − τ)dτ = g(t) ∗ u(t)

Taking the Fourier transform, we obtain :

Y (jω) = G(jω)U (jω) ⇒ G(jω) =
Y (jω)

U (jω)

where

U (jω) =

∫ ∞

−∞
u(t)e−jωtdt ; Y (jω) =

∫ ∞

−∞
y(t)e−jωtdt
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Fourier analysis

Principle : For LTI discrete-time systems, we have :

y(k) =

∞∑
j=0

g(j )u(k − j ) = g(k) ∗ u(k)

Taking the Fourier transform, we obtain :

Y (e jω) = G(e jω)U (e jω) ⇒ G(e jω) =
Y (e jω)

U (e jω)

where

U (e jω) =

∞∑
k=−∞

u(k)e−jkωT ; Y (e jω) =

∞∑
k=−∞

y(k)e−jkωT

Three types of error in Fourier analysis :
1 Sampling error
2 Measurement error
3 Truncation error
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Sampling error

Source of error : We identify G(e jω) instead of G(jω).

If the condition of Shannon Theorem is satisfied then G(e jω) = G(jω).
The condition of Shannon Theorem is never satisfied for real

systems ! There is always a sampling error.
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Measurement error

Source of error : Noise and disturbance.

y(k) =

∞∑
j=0

g(j )u(k − j ) + d(k)
F⇒ Y (e jω) = G(e jω)U (e jω) +D(e jω)

Ĝ(e jω) =
Y (e jω)

U (e jω)
= G(e jω) +

D(e jω)

U (e jω)

The frequency response estimate is unbiased if d(k) is zero-mean.

E{Ĝ(e jω)−G(e jω)} =
E{D(e jω)}
U (e jω)

= 0

The variance of the frequency response estimates are given by :

var[Ĝ(e jω)] =
E{D(e jω)D(e−jω)}
U (e jω)U (e−jω)

=
E{|D(e jω)|2}
|U (e jω)|2

=
Φdd (ω)

Φuu(ω)

Measurement error is large in frequencies that the noise
spectrum is large and the spectrum of input signal is small.
Increasing number of data will not decrease the variance.
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Truncation error

Fourier transform for aperiodic discrete-time signals :

X (e jω) =
∞∑

k=−∞
x (k)e−jkωT

Fourier transform for periodic discrete-time signals :

X (e jωn ) =
1

M

M−1∑
k=0

x (k)e−jkωnT ωn =
2πn

MT
n = 0, 1, . . . ,M − 1

Source of error : For aperiodic signals the Fourier transform is defined
from −∞ to ∞ but it is computed in a truncated interval [0 , N − 1].

Solutions

Excitation with energy signals

Excitation with periodic signals

Windowing
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Truncation error

Excitation with energy signals

Excite the system with a time limited signal such that u(k) = 0 for k < 0
and k ≥ M then the Fourier transform can be computed exactly (no
truncation error).

U (e jω) =

M−1∑
k=0

u(k)e−jkωT

If the system is stable, then y(k) ≈ 0 for large k ≥ N .

So wait until the output returns to the steady state and record all
data.

This way, the truncation error will be negligible for the output (only
the noise will be truncated !).
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Truncation error

Excitation with periodic signals

If the input signal is periodic with period M , its Fourier series can be
computed exactly (no truncation error) :

U (ejωn ) =
1

M

M−1∑
k=0

u(k)e−jkωnT ωn =
2πn

MT
n = 0, 1, . . . ,M − 1

The output at steady-state will be almost periodic (ignoring the
noise) :

Y (ejωn ) =
1

M

L+M−1∑
k=L

y(k)e−jkωnT ωn =
2πn

MT
n = 0, 1, . . . ,M − 1

where L is larger than the settling time of the system.

The noise effect can be reduced by averaging over p periods :

G(e jωn ) =

1
p

∑p
i=1Yi(e

jωn )

U (e jωn )
ωn =

2πn

MT
n = 0, 1, . . . ,M − 1
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Truncation error

Windowing

Truncation can be viewed as multiplying the signal in the time-domain by
a rectangular window. It results in a convolution in the frequency domain.

x

t

t

t

f

z

−Ν Ν

0

0

0

−Ν Ν

1

......

X(ω)

π π

0

ω
−ω

0
+ω

0

F(ω)

ω
0

Z(ω)

ω
0

2π
Ν

2Νθ

*

-ω ω
0 0

z (t) = x (t)f (t) ⇒ Z (ω) = X (ω) ∗ F (ω) =

∫ ∞

−∞
X (ν)F (ω − ν)dν
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Truncation error

Windowing introduces two errors :

Loss of resolution : is related to the main lobe width (MLW) and has a
smoothing effect.

Spectral leakage : is related to the second lobe relative amplitude (SLA),
and generates some errors in the neighboring frequencies.

Trade-off : The spectral leakage can be reduced by increasing the MLW,
which reduces the resolution. Since, the loss of resolution has an smoothing
effect and reduces the noise, increasing MLW is usually preferred.

Example (Hann window)

2 Ν

F(ω)

ω

f(t) 

t 
0 

1 

Ν−Ν 2π
Ν

2π
Ν

0-
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Practical Aspects of Fourier Analysis

Discrete Fourier Transform (DFT) : The implementation formula for
computing the Fourier transform of a sampled signal of length N is :

X (n) =

N−1∑
k=0

x (k)e−jk 2πn
N n = 0, 1, . . . ,N − 1

The complex vector X can be associated to a frequency vector as :[
0,

ωs

N
,
2ωs

N
, · · · , (N − 1)ωs

N

]
where ωs is the sampling frequency.

DFT gives an approximation of the Fourier transform for
continuous-time signals.

DFT samples uniformly N points on the Fourier transform of an
aperiodic discrete-time signal.

DFT gives N times the exact value of Fourier transform for
discrete-time periodic signals.

Nonparametric Identification (Chapter 2) System Identification Spring 2025 33 / 44



Practical Aspects of Fourier Analysis

• Input signal should be rich enough to excite the system in a large
frequency band. A good choice is a discrete white noise or a
PRBS which has uniform spectrum.

• The best choice is to apply several periods of a periodic PRBS
which is rich in all frequencies and has no truncation error.
Moreover, if we use m periods, the measurement error will be
divided by m.

• In order to obtain a periodic signal for the output (for the
deterministic part) we should let the transient response be
finished.

• If we cannot apply a periodic signal, we should use Hamming or
Hann or other windows to reduce the truncation error.

• It is always better to have less frequency data with more accuracy.
For example, if we have enough data, we can divide data to 10
parts and compute G1 to G10 and then compute the average.
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Spectral analysis

For a linear system we have :

y(k) = g(k) ∗ u(k) + d(k) ⇒ Y (e jω) = G(e jω)U (e jω) +D(e jω)

Using the correlation approach we have :

Ryu(h) = g(h) ∗ Ruu(h) ⇒ Φyu(ω) = G(e jω)Φuu(ω)

G(e jω) =
Φyu(ω)

Φuu(ω)
=

∞∑
h=−∞

Ryu(h)e
−jωhT

∞∑
h=−∞

Ruu(h)e
−jωhT

In practice DFT is used to compute the estimates :

Ĝ(ejωn ) =
Φ̂yu(ωn)

Φ̂uu(ωn)
=

N−1∑
h=0

R̂yu(h)e
−jh 2πn

N

N−1∑
h=0

R̂uu(h)e
−jh 2πn

N

; ωn =
nωs

N
; n = 0, 1, . . . ,N − 1
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Spectral analysis

Estimating the noise spectrum

For an LTI discrete-time system, we have :

y(k) = g(k) ∗ u(k) + d(k) ⇒ Y (e jω) = G(e jω)U (e jω) +D(e jω)

Multiplying it with its conjugate and taking the expectation, leads to

E{|Y (e jω)|2} = E{|G(e jω)|2|U (e jω)|2}+ E{|D(e jω)|2}

Therefore, by using Φyy(ω) = E{|Y (e jω)|2} :

Φdd (ω) = Φyy(ω)−
|Φyu(ω)|2

Φuu(ω)

Remark : For periodic signals, Fourier and Spectral analysis are
equivalent !

G(e jωn ) =
Φyu(ωn)

Φuu(ωn)
=

Y (e jωn )U (e−jωn )

U (e jωn )U (e−jωn )
=

Y (e jωn )

U (e jωn )
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Improving the spectral analysis

Averaging over several estimates

G(e jωn ) =

1

m

m∑
i=1

Φyu,i(ωn)

1

m

m∑
i=1

Φuu,i(ωn)

Averaging is done on spectral density functions and not in G , because
using unbiased estimates for correlation functions the spectral density
estimates are also unbiased so“averaging”will reduce the variance.

Windows on correlation functions

Since for large h, the correlation function estimates are not accurate, a
Hamming or Hann window on the correlation functions can be used. These
windows give small weighting to the non accurate parts of correlation
function estimates.

Nonparametric Identification (Chapter 2) System Identification Spring 2025 37 / 44



Improving the spectral analysis

Windowing : The unbiased estimate of the correlation function has large
variance for large |h|. They can be weighted with a window as :

Φ̂yu,f (ωn) =

N−1∑
h=0

R̂yu(h)f (h)e
−j2πnh/N

where, e.g. f (h) =

{
0.5 + 0.5 cos(πh/M ) h = 0, 1, . . . ,M
0 h > M

For a Hann window the variance of the estimates is :

var[Ĝ(jω)] ≈ 0.7M

N

Φdd (ω)

Φuu(ω)

Choice of M

Large M increases the resolution as well as spectral leakage.

Small M reduces the noise effect and smooth the estimates.

If the input signal is white (or PRBS), M should be greater than the
settling time of the impulse response of the system (the settling time
K can be estimated by observing Ryu(h) ≈ 0 for h > K ).
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Spectral analysis

Example
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Closed-loop identification

Why are we interested in closed-loop identification ?
• There are systems that are unstable in open-loop operation.
• The output drift occurs in some systems in open-loop operation.
• It is always better to identify an accurate model in the frequency
zone interesting for control.

Problem : u is correlated with d via feedback (Rdu(h) ̸= 0) so the
spectral analysis cannot be applied directly on input/output data.

Ĝ(e jω) =
Φyu(ω)

Φuu(ω)
=

Φypu(ω) + Φdu(ω)

Φuu(ω)
= G(e jω) +

Φdu(ω)

Φuu(ω)
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Closed-loop identification

Consider two extreme cases :
1 No disturbance : d(k) = 0 ⇒ Φdu(ω) = 0, no error.

2 No excitation : e(k) = −y(k) ; Φuu(ω) = K (e jω)Φeu(ω).

Ĝ(e jω) =
Φyu(ω)

Φuu(ω)
=

−Φeu(ω)

Φuu(ω)
=

−Φeu(ω)

K (e jω)Φeu(ω)
=

−1

K (e jω)

We identify the inverse of the controller !

Solution : Excite the system at s.

1 Identify the TF between s and y :
Ĝ(e jω)

1 +K (e jω)Ĝ(e jω)
=

Φys(ω)

Φss(ω)

2 Identify the TF between s and u :
1

1 +K (e jω)Ĝ(e jω)
=

Φus(ω)

Φss(ω)

3 Divide two models : Ĝ(e jω) =
Φys(ω)

Φus(ω)
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Parametric model from frequency data

A nonparametric model in frequency domain is available.

G(jωk) k = 1, . . . ,N

Find a parametric model for the system :

Ĝ(s) =
B(s)

A(s)
=

bms
m + . . .+ b1s + b0

ansn + . . .+ a1s + 1
m ≤ n

such that J =
N∑

k=1

|ε(ωk)|2 is minimized, where

ε(ωk) = G(jωk)−
B̂(jωk)

Â(jωk)

This is a nonlinear optimization problem in the complex plane.
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Parametric model from frequency data

Solution : Define a linear error with respect to the parameters of A and
B : εℓ(ωk ) = Â(jωk )G(jωk )− B̂(jωk ) k = 1, · · · ,N
Consider the following system of linear equations :

Â(jω1)G(jω1)− B̂(jω1) = 0

Â(jω2)G(jω2)− B̂(jω2) = 0
...

Â(jωN )G(jωN )− B̂(jωN ) = 0

This system of equations can be solved in the least squares sense but the
solution, the parameters of Â and B̂ , may be complex.
Therefore, the real and imaginary part of error are considered separately :

Re{Â(jωk )G(jωk )} − Re{B̂(jωk )} = 0 for k = 1, . . . ,N

Im{Â(jωk )G(jωk )} − Im{B̂(jωk )} = 0 for k = 1, . . . ,N
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Parametric model from frequency data

Problem

In the least squares solution, however, the real error is weighted by a
frequency dependent weighting function :

|εℓ(jωk )| = |[an(jωk )
n + . . .+ a1(jωk ) + 1]ε(jωk )|

Note that |an(jωk )
n + . . .+ a1(jωk ) + 1| is typically large in high

frequencies (why ?).

This problem lead to very good fit in HF and very bad fit in LF.

Solution

Use an iterative approach. At i -th iteration minimize :

J (θi) =

N∑
k=1

∣∣∣∣εℓ(ωk , θi)

Â(θi−1)

∣∣∣∣2
where Â(θi−1) is computed in the previous iteration.
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