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Why Do We Need a Model ?

• For Simulation : Analyze the system’s output for a given input.

Example : Thermal analysis of a space shuttle during
atmospheric re-entry.

• For Design : Determine system parameters to achieve a desired
output for a given input.

Example : Design of electrical, mechanical, or chemical
installations.

• For Prediction : Forecast future values of the system’s output.

Example : Weather forecasting ; flood prediction.

• For Control : Model-based controller design.

Example : Pole placement controller design for tracking and
disturbance rejection.
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How can we find a model ?

First principle modeling

Based on physical laws, physical models

G(s) =
K

s(τs+ 1)
(continuous-time models, pedagogical interest)

System identification

Based on input/output measured data

G(z) =
bz

z2 + a1z + a2
(discrete-time models, practical interest)
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How can we find a model ?

Physical modeling

Em = Kmθ̇
Mm = Kmim(t)

M

Rm Lm

JcEm

im

um

θ

f

Assumptions : only viscous friction, backlash and self inductance Lm

neglected

(Jm + Jc)θ̈(t) + fθ̇(t) = Kmim(t) um(t) = Rmim(t) +Kmθ̇[
(Jm + Jc)Rms2 + (fRm +K2

m)s
]
Θ(s) = KmUm(s)

Θ(s)

Um(s)
=

Km

(Jm + Jc)Rms2 + (fRm +K2
m)s

model : G(s) =
K

s(τs+ 1)
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How can we find a model ?

System identification

fraîches

q(t)

Broyeur

refus

ciment

c(t)

Séparateur

Cement Plant : Crusher & Separator Loop

Crusher

Physical model ?

Identification : Apply a specific input q(t) and measure the output c(t)
and represent it as a function of preceding values of input and output.

c(t) = G[q(t), q(t− 1), q(t− 2), . . . , c(t− 1), c(t− 2), . . .]

G(z) =
bz

z2 + a1z + a2
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Physical or identified model ?

1) Physical models

G(s) =
Km

(Jm + Jc)Rms2 + (fRm +K2
m)s

⌣̈ Direct relation with physical parameters

⌢̈ High order, approximative, need complete process knowledge, physical
parameters should be known

2) Identified models

G(z) =
bz

z2 + a1z + a2

⌣̈ Appropriate for controller design, simple and efficient

⌢̈ Limited validity (operating point, type of input), sensors,
measurement noise, unknown model structure
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Types of models and representations

Models :

• dynamic/static

• monovariable/multivariable

• deterministic/stochastic

• linear/nonlinear

• time-invariant /time-variant

Representations :

• parametric/nonparametric

• continuous-time/discrete-time

• time-domain/frequency-domain

• input-output/state-space
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Types of models (Static/Dynamic)

Static Model

The output of the system at instant t depends only on the input at instant
t and system parameters at instant t.

y(t) = H[u(t)]

Example : y(t) = Ku(t) or static nonlinearity :

y

u

Dynamic Model

The output of the system at instant t depends on the input at instant t
and its past values : y(t) = H[u(τ)] 0 < τ ≤ t
Example : All systems that are presented by differential equations :

ẏ(t) + ay(t) = Ku(t)
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Types of models (Monovariable, Multivariable)

Monovariable Model

Models with a single input and a single output are called SISO models or
monovariable models.

M
y(t)u(t)

Multivariable Model

Systems with more than one input and one output are called multivariable
systems or MIMO systems.

S

u1

up

y1

yq

Example : Consider a state space model with n > 2 state variables :

ẋ(t) = Ax(t) +Bu(t) , y(t) = Cx(t)

with A ∈ Rn×n, B ∈ Rn×1, C ∈ R1×n.
Is this model monovariable or multivariable ?
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Types of models (Deterministic/Stochastic)

Deterministic Model

The output of a deterministic model can be exactly computed based on
the input signal and the model parameters. For example :

y(k) = −ay(k − 1) + bu(k − 1)

Stochastic Model

The output of a stochastic model contains random terms such that it
cannot be exactly computed. The random terms are usually described by a
random disturbance at the output of the system. For example :

y(k) = −ay(k − 1) + bu(k − 1) + e(k)

where e(k) is a random process.

(Chapter 1) System Identification Spring 2025 11 / 58



Types of models (Linear/Nonlinear)

Linear Model

A model is considered linear if its output is linearly dependent on its inputs,
or in other words, if it adheres to the superposition principle, characterized
by two properties : additivity and homogeneity. For example :

y(k) = −ay(k − 1) + bu(k − 1)

Nonlinear Model

A system is nonlinear if, and only if, it does not obey the superposition
principle. For example :

y(k) = −ay(k − 1) + bu(k − 1)y(k − 2)

Superposition Principle : Assume that the output of a system when
excited by u1(t) and u2(t) is y1(t) and y2(t), respectively. Then, the
superposition principle is valid if and only if the output of the system for
α1u1(t) + α2u2(t) is equal to α1y1(t) + α2y2(t) for any constant
α1, α2 ∈ R.
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Types of models (Time-Invariant/Time-Varying)

Time Invariant Model

In time-invariant models with u(t) as input and y(t) as output, the output
of the system to u(t− τ) will be y(t− τ). In other words, the model
parameters are constant. For example :

ẏ(t) + ay(t) = bu(t)

Time-Varying Model

In time-varying models, the model parameters change with time. For
example :

ẏ(t) + a(t)y(t) = b(t)u(t)

Remark : In all systems, the input u(t), output y(t), and state variables
x(t) vary over time. However, the model parameters may either be
time-varying or constant. In a mass-spring-damper system, the force,
position and velocity are time-varying variables whereas the mass, spring
constant and friction coefficient are model parameters.
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Types of representations (Parametric/Nonparametric)

Parametric Model

A parametric model is described with a structure and a set of parameters.
For example :

ẏ(t) + ay(t) = bu(t) , G(s) =
K

τs+ 1

Nonparametric Model

A nonparametric model is described by a graph like the step response or
the frequency response.

t

y(t)

0

impulse response

1
τ1

ω

K

G(jω)

-1

-2

1
τ2

frequency response

Remark : In practice, the nonparametric models can be viewed as a
parametric model with a large number of parameters.
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Types of representations (Continuous-time/Discrete-time)

Continuous-time Model

A continuous-time model describes the relation between inputs and
outputs at all t. For example :

ẏ(t) + ay2(t) = bu(t)

For LTI systems y(t) = g(t) ∗ u(t), where g(t) is the impulse response of
the system, is a continuous-time model that can also be represented by its
Laplace transform : Y (s) = G(s)U(s).

Discrete-time Model

A discrete-time model describes the relation between inputs and outputs at
discrete time points k. For example :

y(k) + ay2(k − 1) = bu(k − 1)

For LTI systems y(k) = g(k) ∗ u(k), where g(k) is the impulse response of
the system, is a discrete-time model that can also be represented by its
z-transform : Y (z) = G(z)U(z).
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Types of representations
(Time-domain/Frequency-domain)

Time-domain Model

A time-domain model is presented by a set of difference or differential
equations. It can be parametric and represented by a state-space model or
nonparametric and represented by a time-domain graph like the impulse
response. The nonlinear systems are usually represented in time domain.

Frequency-domain Model

A frequency-domain model is usually obtained from the transfer function
of a linear model in a parametric representation G(s) or is given by a
graph in Bode diagram in a nonparametric representation G(jω).
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Types of representations (Input-Output/State-Space)

Input-Output Model

The inputs and outputs of the system are the only variables in the model.
For example :

ẏ(t) + ay2(t) = bu(t) , Y (s) = G(s)U(s)

State-Space Model

Other internal variables are involved in the mathematical model that are
called the states of the system. For example :

ẋ1(t) = 2x21(t)x2(t) + x1(t)u(t)

ẋ2(t) = 2x1(t)− 3x1(t)x2(t) + u(t)

y(t) = 5x1(t)x
2
2(t)u(t)

or for LTI systems :

ẋ(t) = Ax(t) +Bu(t) , y(t) = Cx(t) +Du(t)
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Example : Cement mill (Moulin à ciment)

- System -
q(t) c(t)

ċ(t) + 2c2(t) = 3q(t− θ) c(0) = c0

System : dynamic, monovariable, deterministic, parametric, nonlinear,
time-invariant, continuous-time, time-domain.
dynamic/statique ? monovariable/multivariable ? deterministic/stochastic ?
parametric/nonparametric ? linear/nonlinear ?
time-variant/time-invariant ? continuous-time/discrete-time ?
time-domain/frequency-domain ? Linearization ?

Linearization

Taylor Series : f(x) ≈ f(x0) + f ′(x0)(x− x0)

c2(t) = c20 + 2c0(c(t)− c0), ∆c = c(t)− c0, ∆q(t) = q(t)− q0

∆̇c+ 2c20 + 4c0∆c = 3q(t− θ) = 3∆q(t− θ) + 3q0

LTI system : ∆̇c+ 4c0∆c = 3∆q(t− θ) G(s) =
3e−θs

s+ 4c0
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Input/output models

Time-domain continuous-time representation

y(t) = H[u(τ)] −∞ < τ ≤ t H : a causal linear operator

For an LTI system, define the impulse response : g(t) ≡ H[δ(t)]
Convolution integral :

y(t) =

∫ ∞

0
g(t− τ)u(τ)dτ = g(t) ∗ u(t) = u(t) ∗ g(t)

Time-domain discrete-time representation

For a discrete-time LTI system, define the impulse response g(k) as the

response to the Kronecker delta : δ(k) =

{
1 k = 0
0 k ̸= 0

Convolution sum :

y(k) =

k∑
j=0

g(k − j)u(j) = g(k) ∗ u(k)
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Input/output models

Frequency-domain representation

For continuous-time LTI systems :

y(t) = g(t) ∗ u(t) ⇒ Y (s) = G(s)U(s) ⇒ Y (jω) = G(jω)U(jω)

Frequency-domain representation

For discrete-time LTI systems :

y(k) = g(k) ∗ u(k) ⇒ Y (z) = G(z)U(z) ⇒ Y (ejω) = G(ejω)U(ejω)
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State-space models

Definition

State of a dynamic system at t0 is the minimum necessary information
such that knowing u(t) for t ≥ t0 the system output can be determined
uniquely. In other words :

• States summarize the past of a system and are required to determine
its future.

• States of a system of differential equations are its initial conditions.

Example

Consider an RLC circuit

u(t)

R L

C y(t)

uL = LdiL(t)
dt

ic = C duC
dt

States :
−inductor current iL(t)
−capacitor voltage uC(t)
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State-space models

Example

RLC circuit

u(t)

R L

C y(t)

uR(t) + uL(t) + uC(t) = u(t)
iL(t) = iC(t)
uR(t) = RiL(t)

uL(t) = L
diL(t)

dt
iC = C

duC

dt

x1(t) ≡ iL(t)
x2(t) ≡ uC(t)

⇒ Rx1(t) + Lẋ1(t) + x2(t) = u(t)
x1(t) = Cẋ2(t)[

ẋ1(t)
ẋ2(t)

]
=

[
−R/L −1/L
1/C 0

] [
x1(t)
x2(t)

]
+

[
1/L
0

]
u(t)

y(t) =
[
0 1

] [ x1(t)
x2(t)

]
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State-space models

Continuous-time nonlinear model

ẋ(t) = f [x(t), u(t), t] state equation x(t0) = x0
y(t) = g[x(t), u(t), t] output equation

Continuous-time linear time-varying model

ẋ(t) = A(t)x(t) +B(t)u(t) x(t0) = x0
y(t) = C(t)x(t) +D(t)u(t)

Continuous-time linear time-invariant model

ẋ(t) = Ax(t) +Bu(t) x(t0) = x0
y(t) = Cx(t) +Du(t)

Discrete-time linear time-invariant model

x(k + 1) = Ax(k) +Bu(k) x(k0) = x0
y(k) = Cx(k) +Du(k)
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State-space models

Discrete-time nonlinear model

x(k + 1) = f [x(k), u(k), k] state equation x(k0) = x0

y(k) = g[x(k), u(k), k] output equation

Frequency-domain model

continuous-time discrete-time
sX(s) = AX(s) +BU(s) zX(z) = AX(z) +BU(z)
Y (s) = CX(s) +DU(s) Y (z) = CX(z) +DU(z)

From state-space to input-output model

continuous-time
Y (s) = [C(sI − A)−1B +D]U(s) ⇒ G(s) = C(sI − A)−1B +D
Discrete-time
Y (z) = [C(zI − A)−1B +D]U(z) ⇒ G(z) = C(zI − A)−1B +D
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Relation between G(s) and G(z)

u 
1 
(k) = u 

2 
(k) 

0 T t 

output

y 
1 
(t) 

y 
2 
(t) y 

1 
(k) 

0 T t 

y 
2 
(k) 

u 
1 
(t) 

u 
2 
(t) 

intput

u1(k) = u2(k) ⇒ y1(k) ̸= y2(k)

G1(z) =
Y1(z)

U1(z)
̸= G2(z) =

Y2(z)

U2(z)

G(s) y(t)u(t)

A/N A/N

G(z) y(k)u(k)

For a given G(s), G(z) depends on input u(t)
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Find G(z) from G(s)

Conversion with Zero-Order-Hold

Input is a linear combination of steps.

u(k) u(t) y(t) y(k)

G(z)

N/A G(s) A/N

G(z) =
Z{L−1[G(s)/s]|kT}

1
1−z−1

= (1− z−1)Z{L−1[G(s)/s]|kT}

G(s) → G(s)

s

L−1

−→ γ(t)
sampling−→ γ(k)

Z→ G(z)

1− z−1

(1−z−1)−→ G(z)
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Find G(z) from G(s)

Example

Find G(z) from G(s) =
1

s+ 1
T = 0.2 by ZOH method.

G(z) = (1− z−1)Z
{
L−1

[
1

s(s+ 1)

]∣∣∣∣
kT

}
= (1− z−1)Z

{
L−1

[
1

s
− 1

(s+ 1)

]∣∣∣∣
kT

}
= (1− z−1)

[
1

1− z−1
− 1

1− e−T z−1

]
= 1− 1− z−1

1− e−T z−1
=

(1− e−T )z−1

1− e−T z−1
=

0.18z−1

1− 0.82z−1
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Find G(z) from G(s)

Tustin method (Trapezoid integration)

Suppose that G(s) =
Y (s)

U(s)
=

1

s
then ẏ(t) = u(t).

{
y(k+1)−y(k)

T = u(k)
y(k+1)−y(k)

T = u(k + 1)
⇒ y(k + 1)− y(k)

T
=

1

2
[u(k) + u(k + 1)]

⇒ z − 1

T
Y (z) =

1

2
(1 + z)U(z) ⇒ Y (z)

U(z)
=

T (z + 1)

2(z − 1)
⇒ s :

2

T

z − 1

z + 1

Example

Find G(z) from G(s) =
1

s+ 1
and T = 0.2 by trapezoid integration.

s :
2

T

z − 1

z + 1
⇒ G(z) =

1
2(z−1)
T (z+1) + 1

=
Tz + T

2z − 2 + Tz + T
=

0.2 + 0.2z−1

2.2− 1.8z−1
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Summary of models, representations and identification

By some abstraction and simplification, physical systems can be
represented by mathematical models.

There are several types of models (e.g. linear/nonlinear,
SISO/MIMO, etc.)

For each type of model there are several representation models
(parametric/nonparametric, input-output/state-space,
discrete-time/continuous-time, etc.)

There are some methods to get one representation from another.

System identification is the art of fitting a model to the data.

System identification is an experimental method so the design of
experiment (input design) is very important.

The method presented in this course are applicable to all types
of models, however, discrete-time LTI models are emphasized.
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Input Signals

Quality of identified models depends on the quality of the excitation
signal (richness) which is related to its spectrum (power spectral
density function).

Power Spectral Density

For a discrete-time signal u(k) is defined as :

Φuu(ω) = F(Ruu(h)) =

∞∑
h=−∞

Ruu(h)e
−jωh

or
Φuu(ω) = |F(u(k))|2 = |U(ejω)|2

where Ruu(h) is the autocorrelation function of u(k) and U(ejω) is the
Fourier transform of u(k)
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Richness of a signal

Degree of excitation

The number of non-zero values of Φuu(ω) in the interval [0 , 2π[ is a
measure of its richness and is related to the maximum number of
parameters that can be estimated by the signal.

Example

Consider a discrete sinusoidal signal u(k) = sinω0k. The power spectral
density of this signal has only two non zero values at ω0 and −ω0, so its
degree of excitation is 2.
This signal applied to an LTI system G(s) leads to the identification of
G(jω0) (one complex value). Suppose that

G(s) =
K

τs+ 1
⇒ ℜ[G(jω0)] =

K

1 + τ2ω2
0

,ℑ[G(jω0)] =
−τω0

1 + τ2ω2
0

These two equations let us compute two parameters K and τ . If G(s) had
more than two parameters we could not identify them using just one
sinusoidal signal.
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Richness of a signal

Signal Energy :

The integral of the spectrum is equal to the energy of the signal :

1

2π

∫ 2π

0
Φuu(ω)dω =

∞∑
k=−∞

u2(k)

The above equality (Parseval’s relation) can be proved easily by evaluating
the inverse Fourier transform of the spectrum at h = 0 :

Ruu(h) =
1

2π

∫ 2π

0
Φuu(ω)e

jωhdω

It shows that more signal energy leads to a better signal-to-noise ratio and
a more accurate estimation of the parameters.

Spectrum Shape :

The shape of the spectrum shows in which frequencies better estimation
will be achieved.
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Autocorrelation Function

Energy signals : For bounded energy signals, i.e.

lim
N→∞

N∑
k=−N

u2(k) < ∞ ⇒ Ruu(h) = lim
N→∞

N∑
k=−N

u(k)u(k − h)

————————————————————————————————–
Power signals : For power bounded signals, i.e.

1

2N + 1
lim

N→∞

N∑
k=−N

u2(k) < ∞ ⇒ Ruu(h) = lim
N→∞

1

2N + 1

N∑
k=−N

u(k)u(k − h)

————————————————————————————————–
Periodic signals : For this class of power signals, we have :

u(k) = u(k +M) ⇒ Ruu(h) =
1

M

M−1∑
k=0

u(k)u(k − h)
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Step signal

The Fourier transform of a step signal is not defined. Therefore, its spectrum can
be computed as the limit for a pulse signal (M → ∞) :

u(k) =

{
α 0 ≤ k < M
0 k < 0 and k ≥ M

This is an energy signal so Ruu(h) and Φuu(ω) are defined as :

Ruu(h) = lim
N→∞

N∑
k=−N

u(k)u(k − h) = (M − |h|)α2

Φuu(ω) =

∞∑
h=−∞

Ruu(h)e
−jωh =

M∑
h=−M

(M − |h|)α2e−jωh
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Sinusoid signal

For some periodic signals, it’s easier to compute the spectrum using the
Fourier series of the signal.

u(k) = a1 sin(ω1k) =
a1
2j

ejω1k +
−a1
2j

e−jω1k

Therefore, U(jωn) has one component at ω1 and another at −ω1 with an
amplitude of a1/2. So its power spectral density has one component with
amplitude of a21/4 for positive frequencies in the interval [0 , π[.
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Sum of Sinusoids

By adding some sinusoids the input signal becomes richer.

u(k) =

m∑
i=1

ai sin(ωik + ϕi)
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In practice, the phase is chosen as a random signal :
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Discrete Random Process

Example (Throw a die N times)

=100

…

…

…

…

k N

1st realization

2nd realization

n-th realization

x(k) : random variable
x(k) ∈ D = {1, 2, 3, 4, 5, 6}

Expected value of x(k) :

E{x(k)} =
∑
D

x(k)P [x(k)] = 3.5

For stationary processes, expected value can be computed from
measurements :

E{x(k)} = lim
n→∞

1

n

n∑
i=1

x(k, i) or E{x(k)} = lim
N→∞

1

N

N−1∑
k=0

x(k)

Autocorrelation function :

Rxx(h) = E{x(k)x(k − h)} = lim
N→∞

1

N

N−1∑
k=0

x(k)x(k − h)

(Chapter 1) System Identification Spring 2025 37 / 58



Discrete-time zero-mean white noise

E{e(k)} = lim
N→∞

1

N

N−1∑
k=0

e(k) = 0

Ree(h) = E{e(k)e(k − h)} = 0 for h ̸= 0

E{e2(k)} = lim
N→∞

1

N

N−1∑
k=0

e2(k) = σ2
e

e(k)

k 0 1 2 3-1-2

Ree(h)

h-3
π

φee(ω)

     ω
0

σ
2
e

σ
2
e

Spectral density is the Fourier Transform of the autocorrelation function :

Φee(ω) = F{Ree(h)} =

∞∑
h=−∞

Ree(h)e
−jωh = σ2

e
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Discrete-time zero-mean colored noise

n(k) = (1 + c1q
−1)e(k) = C(q−1)e(k) E{e(k)} = 0

E{n(k)} = E{(1 + c1q
−1)e(k)} = E{e(k) + c1e(k − 1)}

= E{e(k)}+ c1E{e(k − 1)} = 0

Rnn(0) = E{n(k)n(k)} = E{[e(k) + c1e(k − 1)]2}
= E{e2(k)}+ c21E{e2(k − 1)}+ 2c1E{e(k)e(k − 1)}
= (1 + c21)σ

2
e

Rnn(1) = E{n(k)n(k − 1)} = c1σ
2
e

0 1 2 3-1-2

Rnn(h)

h

σ
2

ec1 

σ
2

e
2

(1+c1)

-3
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Discrete-time zero-mean colored noise

Power spectral density of colored noise :

Φnn(ω) =

∞∑
h=−∞

Rnn(h)e
−jωh = c1σ

2
ee

jω + (1 + c21)σ
2
e + c1σ

2
ee

−jω

= |1 + c1e
−jω|2σ2

e

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5
Spectral density of n(k)

In general, if n(k) = F (q−1)e(k), then Φnn(ω) = |F (e−jω)|2σ2
e .
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Pseudo Random Binary Sequence (PRBS)

.......................................................................................... conversion

1 → +a

0 → -a

a

addition

modulo 2:

0+0=0

0+1=1

1+0=1

1+1=0

1 2 3 m n

00 1 1 1 1 1 0 1

T

15T

u(k)

+a

-a

0

kT
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Pseudo Random Binary Sequence (PRBS)

Autocorrelation function : PRBS is periodic so :

Ruu(h) =
1

M

M−1∑
k=0

u(k)u(k − h) =

{
a2 h = 0,±M,±2M, . . .
−a2/M elsewhere

Power spectral density : Since autocorrelation function is periodic the
spectrum is discrete :

Φuu(ωn) =
1

M

M−1∑
h=0

Ruu(h)e
−j 2nπ

M
h =

{
a2/M2 n = 0
(M + 1)a2/M2 n = 1, . . . ,M − 1
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Pseudo Random Binary Sequence (PRBS)

Frequency divider : The spectrum of a PRBS can be shaped by using a
frequency divider at the input of the clock pulse to the shift register.

0 10 20 30 40
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Summary on input signals

The input signal should be sufficiently rich in the interesting
frequency zone for identification.

In general, good excitation around the system’s bandwidth is required
(one decade before and one decade after).

The step signal excites very well the low-frequencies (degree of
excitation is infinity because of its continuous spectrum).

A random white noise has a continuous flat spectrum so excites all
frequencies equivalently (degree of excitation is infinity). By a filtered
white noise the spectrum can be shaped.

By sum of sinusoids the degree of excitation and the shape of the
spectrum can be easily designed (but the amplitude of the signal
cannot be directly controlled). The signal is periodic and the
spectrum discrete.

A PRBS has a similar characteristic as white noise but is periodic and
its spectrum discrete. The spectrum can be shaped by a frequency
divider. The amplitude of signal can be directly controlled.
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Least Squares Algorithm

Consider a measured signal y(k) for k = 1, . . . , N and find a polynomial
that fits the data such that :

y(k) = a1 + a2k + a3k
2 + · · ·+ ank

n−1

Let’s define an error function as a linear regression :

ε(k, θ) = y(k)− (a1 + a2k + a3k
2 + · · ·+ ank

n−1)

= y(k)− ϕT (k)θ

where

ϕT (k) = [1 k k2 . . . kn−1]

θT = [a1 a2 a3 . . . an]

Minimize the sum of the square errors defined by the criterion :

J(θ) =

N∑
k=1

ε2(k, θ)
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Least Squares Algorithm

The criterion can be written in matrix form as :
N∑
k=1

ε2(k, θ) = ETE

where : ET = [ε(1, θ) ε(2, θ) . . . ε(N, θ)]. The error vector can be
written as :  ε(1, θ)

...
ε(N, θ)

 =

 y(1)
...

y(N)

−

 ϕT (1)
...

ϕT (N)

 θ

or as : E = Y − Φθ. Then the criterion becomes :

J(θ) = ETE = [Y − Φθ]T [Y − Φθ] = Y TY − 2Y TΦθ + θTΦTΦθ

The minimum is obtained by setting the gradient of J(θ) to zero :

J ′(θ) = −2ΦTY + 2ΦTΦθ = 0

which leads to : θ̂ = (ΦTΦ)−1ΦTY
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Least Squares Algorithm

The LS solution θ̂ = (ΦTΦ)−1ΦTY exists if the information matrix ΦTΦ
is not singular or Φ is full rank. The solution can be written as :

θ̂ =

[
N∑
k=1

ϕ(k)ϕT (k)

]−1 [ N∑
k=1

ϕ(k)y(k)

]

Weighted least squares :

If the errors in different instance have different importance a weighted
error function can be defined : EW ≡ W [Y − Φθ] where W is a weighting
matrix (usually diagonal). The criterion becomes :

J(θ) = ET
WEW = ETW TWE = [Y − Φθ]TW TW [Y − Φθ]

and the parameter estimates :

θ̂ = (ΦTW TWΦ)−1ΦTW TWY
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Least Squares Algorithm (stochastic case)

Suppose that the data are generated by the following model :

y(k) = ϕT (k)θ0 + e(k)

where θ0 is the vector of true parameters and e(k) a zero-mean stationary
random process. In a matrix form, we have :

Y = Φθ0 + E

where, ET = [e(1) e(2) . . . e(N)].
The least squares estimate is also a random variable :

θ̂ = (ΦTΦ)−1ΦTY = (ΦTΦ)−1ΦT (Φθ0 + E)

its quality is expressed by its mean value and its variance.

Biasedness :

An estimator is called unbiased if

E{θ̂} = θ0
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Least Squares Algorithm (stochastic case)

Lemma

Assume that Φ is a deterministic matrix and e(k) a zero-mean stationary
signal with cov(E) = E{EET } = R, then the least squares estimate is
unbiased and

cov(θ̂) = (ΦTΦ)−1ΦTRΦ(ΦTΦ)−1

Proof : The estimates are unbiased because :

E{θ̂} = θ0 + (ΦTΦ)−1ΦTE{E} = θ0

The covariance of the estimates is computed as :

cov(θ̂) = E{(θ̂ − θ0)(θ̂ − θ0)
T }

= E{[(ΦTΦ)−1ΦTE][(ΦTΦ)−1ΦTE]T }
= (ΦTΦ)−1ΦTE{EET }Φ(ΦTΦ)−1 = (ΦTΦ)−1ΦTRΦ(ΦTΦ)−1

Remark : If e(k) is white noise with variance σ2, then R = σ2I and :

cov(θ̂) = σ2(ΦTΦ)−1
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Least Squares Algorithm (stochastic case)

Lemma : Noise variance estimate

If e(k) is white, an unbiased estimate of σ2 can be obtained by :

σ̂2 =
J(θ̂)

N − n

Proof :

E{J(θ̂)} = E{[Y − Φθ̂]T [Y − Φθ̂]}
= E{[Y − Φ(ΦTΦ)−1ΦTY ]T [Y − Φ(ΦTΦ)−1ΦTY ]}
= E{Y TY − Y TΦ(ΦTΦ)−1ΦTY }
= E{Y T [I − Φ(ΦTΦ)−1ΦT ]Y }
= E{(Φθ0 + E)T [I − Φ(ΦTΦ)−1ΦT ](Φθ0 + E)}
= E{ET [I − Φ(ΦTΦ)−1ΦT ]E}
= E{tr{ET [I − Φ(ΦTΦ)−1ΦT ]E}}
= E{tr{[I − Φ(ΦTΦ)−1ΦT ]EET }}
= [tr{IN} − tr{(ΦTΦ)−1ΦTΦ}]σ2 = (N − n)σ2

(Chapter 1) System Identification Spring 2025 50 / 58



Least Squares Algorithm (stochastic case)

Minimum Variance Unbiased Estimates : If e(k) is not white and has a
covariance matrix R, it is reasonable to weight the errors inversely
proportional to the noise variance (less weight if variance is high). A
weighted least squares can be used with :

W TW = R−1

then :
θ̂ = (ΦTR−1Φ)−1ΦTR−1Y

and the covariance of the estimates becomes :

cov(θ̂) = E{(θ̂ − θ0)(θ̂ − θ0)
T }

= E{[(ΦTR−1Φ)−1ΦTR−1E][(ΦTR−1Φ)−1ΦTR−1E]T }
= (ΦTR−1Φ)−1ΦTR−1RR−1Φ(ΦTR−1Φ)−1 = (ΦTR−1Φ)−1

Remark : It can be shown that this estimator is the best unbiased
estimator (with minimum variance) for the problem.
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Maximum Likelihood Estimator (MLE)

Maximum Likelihood Estimator

This estimator chooses the parameter values that make the observed data,
the most likely data to have been observed. The estimated parameters are
obtained by maximizing the Likelihood function.

Likelihood function

Consider a random variable y with the probability density function p(y, θ0),
where θ0 is the vector of the known parameters of the pdf. The likelihood
function is p(y◦, θ), where y◦ is a realization of the random variable and θ
is the unknown parameter to be estimated.

Estimation Procedure

The MLE is obtained usually by maximizing the log-likelihood function :

θ̂ = argmax
θ

log p(y◦, θ)
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Maximum Likelihood Estimator (MLE)

Example (MLE of the DC level)

Consider a random variable y = θ0 + e, where e is a zero-mean Gaussian
white noise with the following pdf :

p(y, θ0) =
1√
2πσ2

e−(y−θ0)2/2σ2

If we have one observation y◦ what is the MLE of θ0.

Solution :

θ̂ = argmax
θ

ln

[
1√
2πσ2

e−(y◦−θ)2/2σ2

]
= argmax

θ

[
− ln

√
2πσ2 − (y◦ − θ)2/2σ2

]
= argmin

θ
(y◦ − θ)2 = y◦
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Maximum Likelihood Estimator (MLE)

Example (MLE of the DC level)

For the same problem, If we have n independent observations, what is the
MLE of θ0.

Solution : The pdf of Y = [y1, . . . , yn] is

p(Y, θ0) =

n∏
i=1

1√
2πσ2

e−(yi−θ0)2/2σ2
=

1

(2πσ2)n/2
e−

1
2σ2

∑n
i=1(yi−θ0)2

Therefore, the MLE is :

θ̂ = argmax
θ

ln p(Y, θ) = argmin
θ

n∑
i=1

(yi − θ)2 =
1

n

n∑
i=1

yi

Remark : For white Gaussian distribution, the MLE is the same as least
squares estimator.
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Maximum Likelihood Estimator (MLE)

Suppose that the data are generated by y(k) = ϕT (k)θ0 + e(k), where θ0
is the vector of true parameters and e(k) a zero-mean stationary random
Gaussian process. In a matrix form, Y = Φθ0 + E, and R = E{EET } is
the noise covariance matrix. Then, the likelihood function is :

p(Y, θ) =
1√

(2π)N det(R)
e−

1
2
(Y−Φθ)TR−1(Y−Φθ)

The MLE of the parameters is :

θ̂ = argmax
θ

ln p(Y, θ) = argmin
θ

(Y − Φθ)TR−1(Y − Φθ)

= (ΦTR−1Φ)−1ΦTR−1Y

Remarks :

The minimum variance estimator is an MLE if the noise is Gaussian.

The estimate θ̂ has also a Gaussian distribution N (θ0, (Φ
TR−1Φ)−1).
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Concluding Remarks

Least Squares Estimator (LSE) is an optimal estimator in the
deterministic case.

For linear models with zero-mean white noise, LSE is unbiased and
has the optimal variance.

For linear models with zero-mean colored noise of covariance R,
weighted LSE with W TW = R−1 is unbiased and has the optimal
variance.

For linear models with zero-mean Gaussian white noise, LSE is the
same as Maximum Likelihood Estimator (MLE).

For linear models with zero-mean Gaussian colored noise of covariance
R, weighted LSE with W TW = R−1 is the same as MLE.
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Bias-Variance Tradeoff

Consider that the data are generated by the following model :

y(k) = ϕT (k)θ0 + e(k)

where e(k) is a zero-mean stationary random noise with variance σ2.
Consider an estimator θ̂ with (dim θ̂ < dim θ0) such that :

ŷ(k) = φT (k)θ̂

The quality of the estimator cannot be assessed by the bias and the
variance of the parameters, so we define :

Mean Square Error (MSE) := E
{
[y(k)− φT (k)θ̂]2

}
We also define :

Bias error :=ϕT (k)θ0 − E{φT (k)θ̂} = ϕT (k)θ0 − φT (k)θ∗

Variance error :=E
{
[φT (k)θ̂ − E{φT (k)θ̂}]2

}
= E

{
[φT (k)θ̂ − φT (k)θ∗]2

}
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Bias-Variance Tradeoff

MSE = σ2︸︷︷︸
Noise error

+E
{
[φT (k)θ̂ − φT (k)θ∗]2

}
︸ ︷︷ ︸

Variance error

+[ϕT (k)θ0 − φT (k)θ∗︸ ︷︷ ︸
Bias error

]2

Bias-Variance Tradeoff : By increasing the number of parameters (dim θ∗) the
bias error is decreased but the variance error augments. Therefore, having a small
bias may lead to a better MSE.
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