

SYSTEM IDENTIFICATION

Prof. Alireza Karimi

Laboratoire d'Automatique
ME-C2 407 email:alireza.karimi@epfl.ch

Moodle ME-421

Spring 2025

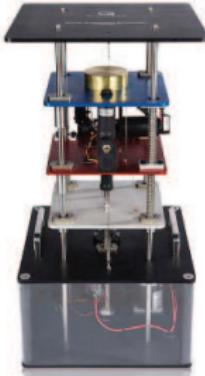
① Fitting a Model to the Data

- Modeling, Type of models
- Input signals
- Linear regression (Least squares algorithm)

② Nonparametric Model Identification

- Time-domain methods (transient response, deconvolution method, correlation approach)
- Frequency-domain methods (frequency analysis, Fourier analysis, spectral analysis)

③ Parametric Model Identification



- Basic models (Finite Impulse Response (FIR) model, ARX model, state-space model)
- Black-box linear models (ARMAX, BJ, OE)
- Nonlinear model identification
- Practical aspects (data filtering, order estimation, model validation, closed-loop identification)

Computer Exercises

Objectives:

- Practice the identification algorithms in simulation.
- Become familiar with the Identification Toolbox of Matlab.
- Parametric identification and validation of the model of mechanical systems using real data.

Active Suspension
MECHATRONIC CONTROLS COLLECTION

CE1: Nonparametric methods

- Impulse response
- Deconvolution algorithm
- Correlation approach
- Fourier analysis (periodic signal)
- Spectral analysis (random signal)

CE-2 : Parametric methods

- FIR model,
- ARX model, IV method
- State-space model
- Order estimation
- ARMAX, BJ, OE models, validation

Project : Identification of a Mechatronic system

Course Schedule

System Identification, Spring 2025		
Tuesday	10:15 – 12:00	12:15– 13:00
Place	MED 2 2423	MED 2 1120
18 February	Introduction	Chapter 1
25 February	Chapter 1	CE-1
04 March	Chapter 1	CE-1
11 March	Chapter 2	CE-1
18 March	Chapter 2	CE-1
25 March	Chapter 2	CE-1
01 April	Chapter 3	CE-1
08 April	Chapter 3	CE-2
15 April	Chapter 3	CE-2
29 April	Chapter 3	CE-2
06 May	Chapter 3	CE-2
13 May	Chapter 3	CE-2
20 May	Chapter 3	CE-2
27 May	Project	Project

Grades and Evaluation

- Brief reports for CE-1 (18 points) and CE-2 (18 points).
- Identification of a system in the final exam (48 points).
- Theoretical questions in the final exam (36 points).

Grading:

Points	111-120	106-110	...	76-80	71-75	66-70	...	11-15	0-10
Grade	6.00	5.75	...	4.25	4.0	3.75	...	1.00	NA

References :

- ① L. Ljung : "System identification, Theory for the users"
- ② T. Soderstrom, P. Stoica : "System Identification"
- ③ Course-notes: " System Identification", A. Karimi, Edition 2023 (in English)