Some Practical Exercises for
System Identification

Spring 2025

Introduction

The objective of the computer exercise sessions is to implement the various algorithms
that students have learned during the lectures and to familiarize them with MATLAB and
its system identification toolbox. There are twelve computer exercise sessions planned, and
each group of two students should prepare two reports (one report for every six sessions)
and submit them on the course’s Moodle platform by the specified due date. The reports
will be graded out of 18 points each.

1 CE-1: Nonparametric Methods

During the first session of the exercises you will create a Simulink model of a third
order transfer function, which is used for all simulations in CE-1.

1.1 Step response

1.

Create a new Simulink model. Create a third order Transfer Function block with
the following parameters :
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G(s) =

2. Define the sample time Ty = 0.25 s (Is this a reasonable choice 7).

Simulate measurement noise by creating a Random Number block with a variance
of 0.01 and a sample time of T and adding it to the output of the transfer function
block.

Create an input Saturation block with an upper limit of 0.7 and a lower limit of
—0.7.

. Finish the block diagram by creating a From Workspace source and a To Works-—

pace sink to exchange data with the workspace. Set the sample time of the From
Workspace and To Workspace blocks to T%.



6.

1.2

1.

2.

3.

1.3

Apply a step with a magnitude equal to the upper saturation limit at the input

and plot the response of the system. To do this, create an M-file. First we need to

generate the input signal. Create a struct simin with the following fields :

— simin.signals.values : A column vector representing the input signal (i.e.
the step)

— simin.time : The time vector corresponding to the input signal

The time vector should have a length of 50 s and the step should occur after 1 s.
Note that the simulation time should be at least 50 s (in the simulation parameters
of Simulink).

. Use the command sim to run the Simulink model with the above input signal and

plot the unit step response of the system G(s).

. In the same way compute the impulse response of the system G(s).

Auto Correlation of a PRBS signal
Download the file prbs.m from the Moodle page of the course. The function
prbs(n,p) generates a PRBS of p periods with an n-bit shift register.

Write a function for Matlab [R,h] = intcor(u,y) that computes R,,(h) for the
periodic signals.

Check your function by computing the autocorrelation of a PRBS signal.

Impulse response by deconvolution method

The objective is to compute the impulse response of the system in simulink using the
numerical deconvolution method. Note that the simulation time should be less than 100
s and the random signal should not exceed the saturation values. For this purpose,

1.

Generate a random signal (see help rand) with a sampling time of Ty = 0.25 s as
the input to the model.

2. Use toeplitz command to construct the input matrix.

Generate a time vector for simulink : t=0:Ts: (N-1) *Ts, where NV is the length of
your input signal.

Compute the finite impulse response using the measured output and the matrix of
the input signal. Make an assumption on the length of the impulse response.

. Compute the impulse response by regularisation (trade-off between bias and va-

riance).

Compare your results with the true impulse response of the discrete-time system
obtained by zoh option for transformation (see tf, c2d, impulse).



1.4 Impulse response by correlation approach
1. Generate an input sequence Uprbs using the prbs command (with p = 2 and n = 8)
and apply it to your system.

2. Using your intcor function that you have already developed, compute the impulse
response of the discrete-time system g(k) using the correlation approach.

3. Compute the impulse response using xcorr(., ., ‘unbiased’) function of Matlab.

4. Compare your results (using xcorr and intcor) with the true impulse response of
the discrete-time system.

1.5 Frequency domain Identification (Periodic signal)
Aim : Use the Fourier analysis method to identify the frequency response of a model
excited by a PRBS signal.

1. Choose a PRBS signal with a length around N = 2000 and a sampling period of
T, = 0.25s. Apply the generated PRBS to the Simulink model in [I.1]

2. Compute the Fourier transform of the input and output signal (use £ft) for each
period and use the average.

3. Compute a frequency vector associated to the computed values (Slide 33, Chap.
2).

4. Generate a frequency-domain model in Matlab using the frd command.

5. Plot the Bode diagram of the identified model and compare it with the true one.

1.6 Frequency domain Identification (Random signal)

Aim : Use the spectral analysis method to identify the frequency response of a model
excited by a random signal.

1. Apply a random signal of length N = 2000 to the system. Discuss the characte-
ristics of the random signal (Gaussian or uniform, binary or multi-level) to obtain
the highest energy of the excitation signal.

Compute the frequency-response of the model using the spectral analysis method.
Use a Hann or Hamming window to improve the results.

Cut the data to m groups and try to improve the results by averaging.

A

Plot the Bode diagrams of different methods and compare them.



2 CE-2 : Parametric Identification Methods

The objective of this exercise is to practice the parametric identification methods. The
real data of two different systems are considered. In the first part, input-output data is
collected from a real DC servomotor using the provided user interface. Then, based on the
collected data, a simple model is obtained using different identification methods. In the
second part the complete identification (order estimation, parametric identification and
model validation) of a mechatronic system is considered.

2.1 Identification of a DC servomotor

The Quanser QUBE-Servo, pictured in Fig. 1, is a compact rotary servo system that
can be used to perform a variety of classic servo control and inverted pendulum based
experiments.

Figure 1. DC' servomotor

Since the open-loop system contains an integrator, we will use a proportional controller to
stabilize the system. Thus, the objective is to identify the whole closed-loop system. The
excitation signal u is a random binary signal and the axis position y is measured with a
sampling period of 0.01s. The input and output must be obtained from the real system
using the provided user interface as follows :

1. To connect to one of the experimental setups please go to https://courseware.epfl.
ch/courses/course-v1:EPFL+-controlsys+2017_T1/aboutand enroll by clicking on
the “Enroll Now” button and following the instructions. Once you are enrolled
follow : View Corse — Module 8 — Implementation and click on the QUBE access
link.


https://courseware.epfl.ch/courses/course-v1:EPFL+controlsys+2017_T1/about
https://courseware.epfl.ch/courses/course-v1:EPFL+controlsys+2017_T1/about
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Figure 2. GUI for data collection with remote access.

2. On the GUI set :
— Signal Generator — random binary signal with amplitude A = 10. (this is the
input signal that you will use for data collection)
— Measurement — position
— Controller type — PID (this is your initial stabilizing controller)
— Sampling period h [s] — 0.01
— PID params — K, =0.03,7; =0,7; =0
The GUI with the correct settings will be as presented in Figure 2 where also the
input output signals and a live video of your setup are being displayed.

3. Once the the settings are done click on the “zero buff” button to clear the previous
data. Wait until you have at least 3072 new samples and then click on the “save”
button to download the data into your PC. (You can check how many samples you
have after the zero buff by using the slider on top of the plots, see Figure 2).

4. Rename the downloaded data file. Then, by running the GetExperimentData.m file
provided in the Moodle page of our course load the data to your Matlab workspace
(You need to provide the path of your data file to GetExperimentData.m as input).
This should provide you the input output data of 3 periods with a period of 1024
samples.

Then, perform system identification with different methods as requested in the following
sections.

2.1.1 FIR model identification
Assume an FIR model for the data with m = 200 parameters (d = 1) :
G(k,0) = byu(k — 1) 4+ - + bpu(k —m), 07 :=[by -+ by

1. Estimate the vector of parameters 6 as 0 using the least squares algorithm. Note
that the matrix ® is a Toeplitz matrix.



2.

2.1.2

Compute the predicted output of the identified model, g(k, é) Plot the measured
output y(k) and the predicted output in the same figure and compute the loss

~

function J(#) (loss function is equal to the sum of squares of the prediction error).

. Assuming that the noise is white, estimate the noise variance and compute the

covariance of the estimated parameters. Plot the finite impulse response of the
system (the vector 0) together with £20 confidence interval (use errorbar).

ARX model identification

Assume a second order ARX model for the data with the following predictor :

y(k,0) = —ary(k — 1) — agy(k — 2) + byu(k — 1) + byu(k — 2), 07 = lar, ag, by, by

1.
2.

2.1.3

Estimate the vector of the parameters 6 as 6 using the least squares algorithm.

Compute the predicted output of the identified model, (%, é) Plot the measured
output y(k')A and the predicted output in the same figure and compute the loss
function J(6).

Compute the output of the identified model, y,, (k), for the input signal, u(k), using
1sim. Plot the measured output y(k) and y,,(k) in the same figure and compute
the two norm of the error.

. Try to improve the results using the Instrumental Variable method (note that y,, (k)

is a noiseless estimate of y(k)). Compare the result with that of ARX model.

State-space model identification

The objective of this part is to identify a sate-space model for the Quanser Qube-servo
system using the subspace method based on the extended observability matrix.

1.

Construct the matrix Y and U based on the measured data (see page 83 of the
course-notes) and compute Q = YU.

. Compute the singular values of @) and conclude the number of states n (use

[UU,S,V] = svd(Q)). Compute the extended observability matrix O, (the first
n columns of UU).

3. Compute the matrix A and C' from the extended observability matrix.

4. Assume that D = 0 and estimate B using the least squares algorithm.

5. Compute the output of the identified model, y,,(k) for the input signal u(k) using

1sim. Plot the measured output y(k) and y,,(k) in the same figure and compute
the two norm of the error.



2.2 Parametric Identification of an Electromechanical System

The objective of this part is to identify and validate a parametric black-box model of
a DC motor with a flexible element attached on top, resulting in large resonant modes
at high frequencies. Different weights can be attached to the flexible element at different
positions, resulting in different loadings (see Fig. 3). In the first part the order of the
system is identified using the data and in the second part different parametric models are
identified and validated.

A model between the DC motor input voltage u and the axis position y should be
identified. For data collection the system is excited with a PRBS signal of amplitude 5
and shift register 13, the axis position y is measured with a sampling frequency of 500 Hz.
As in Part 2.1, the open loop system from input to the axis position contains an integrator.
This time instead of using an initial controller to stabilize the system, we will first identify
a model from the input to the angular velocity of the axis and add an integrator to our
model afterwards such that we end up with a model from the input to the axis position.

Download the file data_positionl.mat that contains the experimental data of the
flexible link system containing the input signal u and the sampled output signal y. Com-
pute the derivative of the output measurements to obtain angular velocity data of the
axis by the command :

y_derivative = 1lsim(1 - tf('z', Ts)"-1, y);

Use the command iddata to generate a data object that can be used for the System Iden-
tification Toolbox and remove the mean value of the data using the command detrend :

Z = detrend(iddata(y_derivative, u, Ts, "Period", 8191));

Now you can perform system identification on Z and you will add back the integrator at
the very last step of model validation.

Y
M‘W\*\‘\“‘“‘W““““‘W‘g““““"&” ™

4

i

Figure 3 : Quanser Servo-Qube with weights attached on top

Remark : Matlab uses the following notation :

B(q)
F(g™)

Alg y(t) =

u(t —ny) +



where :

Al =1+aqg ' +- +ang ™ Blg ") =bi+bq '+ +bnqg ™"
Clg)=1+cqg "+ Feq™ D@ )=1+dig +-+dpq ™
Flg) =1+ fig '+ + fu, a7

For ARX structure we have n, = ng = ny = 0, for ARMAX ng = ny = 0, for OE :
Ng = Ne = ng = 0 and for BJ : n, = 0.

2.2.1 Order estimation

1. Using the arx command, identify 15 models of orders from 1 to 15 (ny = 1,n, =
ny, = 0,0 = 1,...,15) and plot the “loss function” of the models versus the mo-
del order (loss function is available for the model M in the following variable :
M.EstimationInfo.LossFcn). Estimate the order of the system from this curve.

2. Validate the chosen order by checking the zero/pole cancellation approach using
several models identified by the ARMAX structure (ny = 1,n, = np, = n. =
9,1 = Omins - - -, Omax)- Use h=iopzplot(M) to plot the zeros and poles of M and
showConfidence (h,2) to plot their confidence intervals (4+20).

3. Estimate the delay ny, by inspecting the coefficients of B(¢~') and their standard
deviations (use M.b and M.db. Compute the number of parameters in the numerator
(1§nb§5—nk+1).

4. Compare your results with those proposed by struc, arxstruc, selstruc.

2.2.2 Parametric identification

1. Divide the data into two parts and use one part for identification and the other
part for validation.

2. Using the estimated values of n,, n, and ny, identify different parametric models
by the following methods : arx, iv4, armax, oe, bj, ndsid. For the structures
with noise model take n. = ngy = n,. For the state-space model choose number of
states equal to the global order §.

2.2.3 Model validation

1. Compare the output of the identified models with the derivative of the measured
output using the command compare. What is the best model 7

2. Compare the frequency response of the models with a nonparametric frequency-
domain identified model from u to y_derivative. What is the best model ?

3. Validate the identified models by the whiteness test of the residuals as well as the
cross-correlation of the residuals and past inputs using the command resid. Which
models are validated ?

4. Add an integrator to all of the parametric models that you have obtained such
that :



G = G_derivative / (1 - z~-1);

Generate a new validation dataset using the second half of the position data y.
Compare the output of the identified models with the measured output using the
command compare. Compare the frequency response of the models with a nonpa-
rametric frequency-domain identified model from u to y. What is the best model ?
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