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Context



Context
Nils FALCOZ-RAVASSE
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Major Challenge
Nils FALCOZ-RAVASSE
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Environmental challenges are 
becoming central !

Source : Delbecq et al., Référentiel, 2023  



Rapid prototyping of non-critical parts.  
- Exploring phase : limited by insufficient 

precision and materials.

History
Nils FALCOZ-RAVASSE
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1980s - 1990s

2010s

2020s

Turning point occurred 
- Advanced processes such as 

powder bed fusion and laser metal 
printing improvement. 

- These technological advances 
paved the way for practical 
applications. 

Exponential growth scale.  
- SpaceX and Relativity Space are pushing technological 

boundaries by printing not only engines but entire 
rockets.  

- The AM market in aerospace is expected to reach USD 
3.187 billion by 2025, with a compound annual growth 
rate of 20.24%, reflecting its growing adoption in critical 
applications and its central role in the Industry 4.0  



Manufacturing 
Nils FALCOZ-RAVASSE

Source : Kamel MOUSSAOUI, 2023



Manufacturing Sequence
Nils FALCOZ-RAVASSE
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1. Creating models and prototypes to test 

designs. 

2. Manufacturing custom tools and complex 

molds  

3. Producing functional components, including 

final parts
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Advantages

Limitations 



Advantages & Limitations
Nils FALCOZ-RAVASSE
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Multiple Avantages: 
- Performance
- Supply Chain 
- Financial Impact 
- Sustainable 

But some drawbacks :
- Technical challenge 
- Certification 
- Economic and production Constraints 

Source : Integration of Additive Manufacturing in the 
Aerospace Industry, G. Doré, 2016 



Performance
Nils FALCOZ-RAVASSE
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● Weight reduction and performance gain : Significant 
material savings with optimized, lightweight designs.  
○ Topology Optimization : Advanced algorithms for 

creating efficient structures  
○ Revolutionary Part Design : Geometries previously 

impossible with traditional manufacturing.  
● Integration of Multiple Functions : Combining 

functionalities into single, seamless components.  
○ Customizable internal geometries, such as cooling 

channels or honeycomb patterns. 
○ Monolithic Parts  : Eliminating assemblies by producing 

single, unified pieces.

 

Source : Additive manufacturing and HIP, a 
bright future, Hiperbaric



Supply Chain
Nils FALCOZ-RAVASSE
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●   Storage : 
○ Reduce cost 

● Flexibility , Polyvalence
○ Allow a single machine to produce 

multiple part
● Even more gain for isolate place  

 

 

Source : Albraa NOORWALI, IMPACT DE LA FABRICATION ADDITIVE SUR LA 
PERFORMANCE DE LA SUPPLY CHAIN, 2023



Financial Impact
Nils FALCOZ-RAVASSE
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● Cost Reduction  

○ Minimizing material waste (near-net shape), not negligeable for high value material 

present in aerospace (Inconel, titanium)   

○ Eliminating intermediate steps like assemblies or manual adjustments, AM significantly 

reduces production times and associated costs  

● Time Reduction   

○ Accelerate product development cycles (reduce design, testing, and iteration timelines)  

○ Reduces time-to-market through accelerating industrialization cycles

 



Sustainability
Nils FALCOZ-RAVASSE
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● AM plays a central role in sustainability objectives, a priority in aerospace.   

○ Weight reduction decreases fuel consumption, reducing CO2 emissions over an aircraft's 

life-cycle.   

○ Energy efficiency gains/ better performance from optimized designs.  

○ Ability to reduce manufacturing waste and stock rare or expensive materials supports a 

more sustainable use of resources.

 



Technical Challenge and Material Limitation 
Nils FALCOZ-RAVASSE
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Extreme requirement 

● Reliability and high mechanical performance 

● Anisotropy  

○ Post-processing (Hot Isostatic Pressing (HIP)  

longer production cycles and increase costs  

● Prone to microstructure  

● Struggles to integrate multiple materials

 

Source : K. Hagihara et al., Control of 
Anisotropic Crystallographic Texture […], 
2023 



Certification and Regulatory Constraints 
Nils FALCOZ-RAVASSE
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High requirement in aerospace 
 --> Mismatch pace of technology 
advancement and regulatory 
advancement     

The main challenge is demonstrating that we 
have control over the process and that the 
observed results are reproducible

 

 

Source : Integration of Additive 
Manufacturing in the Aerospace Industry, 
G. Doré, 2016 



Economic and Production Constraints 
Nils FALCOZ-RAVASSE
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Not a miracle solution   
● Expensive, only some operation is worth 

it
● Well-suited for small series production 

and complex parts, its profitability 
remains uncertain for mass production 
or long printing durations.

 

Source :Byron Blakey-Milner  Metal 
additive manufacturing in aerospace: A 
review, 2021
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Technology
&

Materials
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AM 
technologies 
in aerospace



Metal-based additive manufacturing for 
aerospace
Léo DIGONZELLI
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Powder Bed Fusion processes
Léo DIGONZELLI
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Laser Powder Bed Fusion (L-PBF)
● High power laser to selectively melt layers of metal 

powder bed
● Most widely adopted metal AM in aerospace

● Applications : lightweight structural components, 
heat exchangers, engine parts

● Feature size ~0.2-0.4mm
● Max part size ~300-400mm

● Recent advancement : multi-laser systems, build 
volume up to 500x280x850mm



Powder Bed Fusion processes
Léo DIGONZELLI
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Electron Beam Powder Bed Fusion 
(EB-PBF)

● Electron beam to selectively melt metal powder layer 
by layer in vacuum environment

● Pre-heating step to reduce residual stresses

● Maximum size similar to L-PBF (recent systems with 
350x380 mm dimensions)

● Mechanical properties comparable to casted parts, 
but increased surface roughness compared to L-PBF



Directed Energy Deposition processes
Léo DIGONZELLI
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● Material deposited directly into a melt pool, 
generated by an energy source

● Geometric flexibility and freedom
● Suitable for very large components
● Lower resolution than PBF (~1mm)

AW-DED L-PBF



Directed Energy Deposition processes
Léo DIGONZELLI
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Laser Powder & Laser Wire DED

Electron beam Wire DED

Arc Wire DED

AW-DED EBW-DED

LW-DED

LP-DED



Solid-State and other processes
Léo DIGONZELLI
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Cold Spray

Ultrasonic AM (UAM)

Binder jetting

…

Cold Spray

UAM



Non-metallic additive manufacturing for 
aerospace
Léo DIGONZELLI
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Selective Laser Sintering (SLS)

Stereolithography (SLA)

Fused Deposition Modeling (FDM)

Polyjet
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AM materials 
in aerospace



AM metals and alloys in aerospace
Léo DIGONZELLI
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Nickel and Iron-based superalloys
● Most used in aerospace applications (Ni-based = 50% 

mass of aircraft engine)
● Excellent mechanical properties at high temperature, 

high pressure & in harsh environments, high creep 
resistance

● Turbines, combustion chambers, discs and blades in 
high pressure turbines, high-pressure hydrogen env.

Stainless steels
● Very high strength-to weight ratio, outstanding durability
● Engine and exhaust systems, hydraulic parts, structural 

joints, landing gear systems, heat exchangers
● But high density, some are prone to cracking with AM

L-PBF Inconel 718 
integrated heat 
exchanger

LP-DED Nasa HR-1 
Nuclear thermal 
propulsion chamber



AM metals and alloys in aerospace
Léo DIGONZELLI
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Titanium alloys
● Very high strength-to-weight ratio & high 

temperature stability, corrosion resistance 
● Ti6Al4V : bearing frames, landing gears, 

compressor discs & frames, cryogenic propellant 
tanks, rotating machinery, … 

● Ti6242 : compressor blades, rotating machinery

Aluminium alloys
● Good strength-to-weight ratio, low cost
● Some alloys prone to cracking when produced 

with traditional AM (PBF, DED) → solid-state 
processes

● 1xxx, 2xxx, …, 7xxx series; AlSi10Mg Mass-optimized AlSi10Mg cryogenic 
propellant injector

L-PBF Ti6Al4V cabin bracket connector of Airbus A350 
XWB



AM metals and alloys in aerospace
Léo DIGONZELLI
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Copper and Cobalt alloys
● High temperature applications
● Co → no need for high thermal conductivity

○ CoCr, Stellite
● Cu → very high thermal conductivity

○ heat exchangers
○ GRCop-42 & GRCop-84, CU110

Refractory alloys
● Niobium (C-103), Tantalum, Tungsten, 

molybdenum, … 
● Used for extremely high temperatures

○ Space nuclear power & propulsion
○ Thermal protection of vehicles

L-PBF GRCop-84 
combustion chambers

L-PBF W chamber test at 
1900°C

L-PBF C-103 heat pipe 
segments 



Development of new AM aerospace alloys
Léo DIGONZELLI
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Initial application of AM in aerospace:
● Use of alloys traditionally processed through conventional methods

○ Chosen for traceability and well-known properties
○ Not well suitable for AM 
○ Challenges : cracking, porosity, oxidation, …

Today:
● Specialized alloys tailored for improved AM processability and performance

○ Custom aluminium alloys for high strength and successful AM production (7A77, 
AlSi10Mg, Scalmalloy, … )

○ NASA GRCop-42 and GRCop-84 copper alloys for high-heat flux applications
○ NASA HR-1 superalloy for high pressure hydrogen environment
○ NASA GRX-810



Bi- or Multi-metallic materials 
Léo DIGONZELLI
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● Localised optimization for thermal or structural performance
● AM allows various options for multi-alloys joints

○ Discret transition
○ Gradual compositional changes
○ Layer of a third alloy



Bi- or Multi-metallic materials 
Léo DIGONZELLI
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NASA advances for rocket engine optimization (RAMPT project)

● GRCop-42 or GRCop-84 L-PBF chamber liner for high thermal conductivity
● Inconel 625 or NASA HR-1 DED nozzle for extreme strength and heat resistance
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Quality Control
&

Certifications



Quality Control
Victor CHARTRAIN
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High quality parts required 
for aerospace applications

Need for Quality control Printing process control VS 
evaluation process 



Quality Control - Printing Process
Victor CHARTRAIN
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● Optimize relevant printing process parameters to ensure in-situ correction of defects
  
● Real time monitoring  

○ Very efficient  
○ Difficult to implement in the process sometimes  

● Comparison with benchmark parameters  
○ Easier to use as a first approximation  
○ Less efficient
○ Lack of knowledge for very specific applications



Quality Control - Printing Process
Victor CHARTRAIN

37

Direct Metal Deposition processes (DMD), AM with metals 
● Quality issues

○ heterogeneous melt pool temperature
○ heterogeneous laser powder density
○ heterogeneous material delivery rate  

● IR pyrometer measures melt pool temperature + close-loop controller adjust laser power 
density --> reduced stair-step effects

 

Source: Hoejin et al., 2018



Quality Control - Printing Process
Victor CHARTRAIN
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Powder Bed Fusion processes 
(PBF), AM with metals
● Quality issues: 

○ heterogeneous distribution of the powder 
bed temperature

○ heterogeneous laser output power  
● Pyrometers (photodiodes, digital camera) 

monitor temperature  
○ More widely used than thermocouples  
○ Can be included inside laser cladding head

 

 

Source: Guijun Bi et al., 2007



Quality Control - Printing Process
Victor CHARTRAIN
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Fused Deposition Modeling 
processes (FDM), AM with polymers
● Quality issues: 

○ surface roughness
○ resolution limited to filament thickness 

(stair-case effect)
○ thickness deviations  

● Good practices: 
○ features in plane size, spacing between 

adjacent features > 1mm
○ post-processing (hot cutting, CNC 

machining)
○ proper design for manufacture

Source: Alberto Boschetto et al. (2016)



Quality Control - Evaluation Process
Victor CHARTRAIN
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● Evaluate part's reliability after it has been manufactured  

● External measurement techniques = evaluate overall dimensions, geometry, surface 

roughness, etc.  

● Internal measurement techniques = characterize mechanical properties  

○ Destructive testing  

○ Non-destructive testing (NDT)

 

 



Quality Control - Evaluation Process
Victor CHARTRAIN
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Non-destructive testing techniques (NDT)
● X-ray computed tomography (CT) widely used  

○ Inspects cracks, pores, trapped unmelted metallic powder, etc.  
○ Can document time-related damages (crack formation/propagation, wear, 

etc.)  
○ Poor resolution for large parts and components with thick walls  
○ Not fitted to high X-ray absorbing metals

 

 

Source: Du Plessis et al. (2020)



Certifications
Victor CHARTRAIN
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● Aerospace industry highly regulated through strict standards  

● Goal: ensure repeatability of product process and consistent quality of parts 

manufactured  

● Manufacturers obligations: should be able to track each part through entire 

production and supply chain  

● Challenges for developing certifications: lack of prior knowledge on the 

subject, precise property databases, understanding of failure mechanisms  

● Subject to change in the future
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Case Study 1
Space



Introduction - AM FOR Space
Jérémie HUSER
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● Mass Reduction
● Complexe Shape
● Performance
● Monolithic

Antenna Support

Raptor 3, SpaceX

RF Antennas & Waveguides, Swissto12
Demo-B1, EPFL Rocket Team



Introduction - AM IN Space
Jérémie HUSER
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● Microgravity
● Flexibility
● Cost Reduction
● New Structures

SpiderFab Bot creating a truss in obitThe first metal 3D printer for space 

Concrete structures on the moon



Swissto12
Jérémie HUSER
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History
● Founded in 2012 by Dr. Emile de Rijk (PhD in Physics at EPFL)
● Swiss-based, Renens
● Pioneer in the use of AM to create RF components.
● In 2019, first antenna in space
● > 1000 components in space

Products
● RF components

○ Antennas 
○ Waveguides

● Satellite, HummingSat
○ World’s first commercial GEO SmallSat.



Swissto12 - RF Antennas and Waveguides 
Jérémie HUSER
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RF Antennas
● Monolithic

○ Antenna clusters can contain hundreds of elements
● X-band example (4 elements 2x2):

○ X-band military band (≈7.5 GHz);
○ dual-circular polarization in with a cross polarization in 

excess of 30 dB;
○ low insertion loss (typically 0.35 dB);
○ total weight < 250 g;
○ total length: < 350 mm;

● 3x Lighter than conventional antennas
● Mechanical and RF properties increased
● Copper, Aluminum or Titanium alloys 

Ku-band Antenna (left) and X-band Antenna (right) 



Swissto12 - Patch Antenna 
Jérémie HUSER
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Patch Antenna
● Swissto12 & Fleet Space Technologies
● 2021, First-ever AM metal patch antennas
● Nanosatellites
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https://docs.google.com/file/d/115AZUAzx3YUShgK7mCrzLDkdNoysmKSh/preview


RF Antennas - AM Process
Jérémie HUSER
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RF Antennas - AM Process
Jérémie HUSER
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Process used
● Selective Laser Melting (SLM)

○ Ability to produce parts with good RF performance
○ Challenges with manufacturing tolerances and surface 

roughness
○ Time-intensive
○ Costly

● Metal Binder Jetting (MBJ) 
○ Emerging as an alternative for high-frequency RF parts.
○ Lower costs (up to 10 times cheaper than SLM)
○ Involves high-temperature sintering

■ Can cause shrinkage and affect dimensional 
accuracy.



RF Antennas - Machines - SLM
Jérémie HUSER
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AM in Space - History
Jérémie HUSER
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Metal AM in Space
Jérémie HUSER
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First metal 3D printer in Space
● Arrived aboard ISS in January 2024
● ISS’s Columbus laboratory module
● Collaboration between ESA and Airbus

Description
● Air circulation & Filtration system

○ Evacuate Heat and capture particles
● Sealed box

○ Protect from laser heat and contamination
○ Nitrogen inside

● Laser and Wire feeder
○ To melt and deliver material

● Motion tables Wire-based laser metal 3D printing
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https://docs.google.com/file/d/1QK0dB3_2VoxkT-ghX2dluwhDZCyD-DWa/preview


Metal AM in Space
Jérémie HUSER
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First metal 3D printed parts in Space
● 200 Layers
● Finished in August 2024
● Goal: Gather data of the effects of microgravity on the 

printing performance
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Case Study 2
Aviation



Impact of Aviation on climate
Guillaume VULLIOUD
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● 2.5 % of global emission  

● 1 billion tons of CO₂    

● 95 billions gallons of jet fuel in 2022  

● 1 gallon = 9.57 kg of CO₂



What AM can change ?
Guillaume VULLIOUD
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● An A380 weight 277 tons and consume 3’170 gallons of fuel per hours  

● 1 kg save on an A380 saves 0.01 gallons of fuel per hours  

● 3’000 flight hours a year   

→ 30 gallons save a year per aircraft



Airbus - Leading Aerospace Innovation
Guillaume VULLIOUD
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● Founded in 1970
● Competition 

with Boeing



Airbus - Relation to AM
Guillaume VULLIOUD
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2010
Cabin interiors and 

structural components 

By 2022
Over 1,000 AM parts 

integrated into the A350 
XWB

Impact
Reduce waist material, 

cost, supply chain length 
and fuel consumption 



Airbus - A350 XWB Brackets 
Guillaume VULLIOUD
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● Weight saving 
(up to 50%) 

 



Airbus - Machine used
Guillaume VULLIOUD
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Airbus - Machine used
Guillaume VULLIOUD
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Airbus - Machine used
Guillaume VULLIOUD
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Synthesis for SLM
Guillaume VULLIOUD
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Productivity

Monitoring

Innovation



Rolls-Royce
Guillaume VULLIOUD
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● 1.5-meter AM piece  

○ 48 aerofoil vanes, including internal 

passages for an anti-icing system



https://docs.google.com/file/d/1ehnXMEoqSuIecpAESuw582uRy8_OJc_7/preview
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Rolls-Royce - Machine used
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