
Studio 9: Buckling of plates

Exercise 9.1

S 9.0.1 Problem 1
In lectures, we derived the critical force Pcr required to buckle a rectangular plate by
assuming the deformed shape is sinusoidal with a certain wavenumber. However, we
did not study the amplitude of the buckled solution. In this studio, we investigate
the post-buckling deformation by considering the in-plane stretching of the plate.
The plate under consideration is square with side length a. We assume all edges are
simply supported and an in-plane displacement ũ is applied along the x1-direction,
as sketched above. The origin of the coordinate system is taken to be the centre of
the square.
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Questions:
1. What is the function that describes the out-of-plane deformation w(x1, x2) as-

suming a sinusoidal buckled shape with amplitude w̃, i.e., how many half-waves
are there?

We begin by deriving the bending energy Ub.

2. Calculate the components of the curvature tensor Kαβ , assuming out-of-plane
deformation is given by the fundamental (n = 1) buckling mode derived in
lectures:

w = w̃ cos
(πx1
a

)
cos
(πx2
a

)
. (9.1)

3. State the bending energy density in terms of the components of the curvature
tensor.

4. Using the curvature components Kαβ computed in question 2, calculate the to-
tal bending energy (assuming D is the bending stiffness of the plate). Your
answer should be proportional to w̃2/a2.

We now focus on the stretching energy Us.

5. What conditions do the in-plane displacements u1 and u2 satisfy?
Hint: recall that the plate is simply supported, the origin is at the plate center
(i.e. there is symmetry about x1 and x2), and a displacement ũ is applied in
the x1-direction.

6. Derive the components of the in-plane strain tensor Eαβ assuming the following
in-plane deformation:

u1 = q1 sin

(
2πx1
a

)
cos
(πx2
a

)
− 1

2
ũ x1, (9.2)

u2 = q1 sin

(
2πx2
a

)
cos
(πx1
a

)
. (9.3)

In view of your answers to question 5, why is this a reasonable ansatz for u1
and u2?

7. State the stretching energy in terms of the components of the in-plane strain
tensor, assuming the in-plane stiffness is C. (Note that the derivation is tedious
to do by hand.)

8. Assuming that the total energy is U = Ub + Us, derive an expression for q1.
Hint: use a variational argument, i.e. ∂U/∂q1 = 0.

9. Hence obtain an equation for the buckled amplitude w̃.

10. Noting the different solutions that are possible, sketch how w̃ evolves with ũ.
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S 9.0.2 Problem 2: shear buckling
In this problem we consider the following question: given a rectangular plate of side
lengths a and b, what is the shear force N12 that causes the plate to buckle? Note that
the solution ansatz for w used in the previous problem (i.e. equation 9.1) is no longer
applicable, since the deformation due to shear is generally not symmetric about the
plate centre. However, we can still approximate the solution in terms of trigonometric
functions. In this problem, for simplicity, we will limit ourselves to the pre-buckling
behavior. The origin of the coordinate system is now at the plate corner, as sketched
below.

Questions:
1. Compared to the first problem, since we consider only the pre-buckling behav-

ior, what simplifications can we say about the in-plane displacements (u1, u2)
and the in-plane stress resultants (N11, N22)?

2. Calculate the total bending energy, assuming the following out-of-plane behav-
ior:

w = q1 sin
(πx1
a

)
sin
(πx2
b

)
+ q2 sin

(
2πx1
a

)
sin

(
2πx2
b

)
. (9.4)

3. What is the total stretching energy in terms of the applied shear N12?

4. What is the critical shear force Ncr required to buckle the plate? (Hint: use the
variational arguments for q1 and q2.)

5. At what aspect ratio does the plate require the least amount of shear to buckle?

6. Is it possible to solve for q1 and q2 given the assumptions we have made?
Why/why not?
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Further hints for Problem 1
Questions 1 to 6 can be answered by following Lecture 9 directly.

7. The total stretching energy is

Us = −
C

8a2

{
− a4ũ2 +

[
(ν − 9)π2q1

2 +
π2 (ν + 1) ũ w̃2

2
− 64 (ν + 1) q1

2

9

]
a2

− 4 (ν − 5/3)π2 q1w̃
2a− 5π4w̃4

16

}
. (9.5)

8. The solution for q1 is

q1 =
(18 ν − 30)π2w̃2

a [9π2 (ν − 9)− 64 (ν + 1)]
(9.6)

9. Use the variational argument, i.e. ∂U/∂w̃ = 0, and substitute in the solution
for q1.

10. See the lecture for a qualitatively similar curve.

Further hints for Problem 2
Question 1 can be answered by following Lecture 9 directly.

2. The total bending energy is

Ub =

∫ b

0

∫ a

0
ub dx1dx2

= D
π4
(
q1

2 + 16 q2
2
) (
a2 + b2

)2
8b3a3

.

(9.7)

3. Us can be derived as,

Us = −
32

9
N12 q1 q2. (9.8)

4. The critical shear for buckling is

Ncr =
9π4

32
Dab

(
1

a2
+

1

b2

)2

. (9.9)

5. Find the minima of Ncr as a function of a while keeping the rest constant.
�
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