
Studio 9: Buckling of plates

Exercise 9.1

S 9.0.1 Problem 1
In lectures, we derived the critical force Pcr required to buckle a rectangular plate by
assuming the deformed shape is sinusoidal with a certain wavenumber. However, we
did not study the amplitude of the buckled solution. In this studio, we investigate
the post-buckling deformation by considering the in-plane stretching of the plate.
The plate under consideration is square with side length a. We assume all edges are
simply supported and a total in-plane displacement u0 is applied symmetrically along
the x1-direction, as sketched above. The origin of the coordinate system is taken to
be the centre of the square.
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Questions:
1. What is the function that describes the out-of-plane deformation w(x1, x2) as-

suming a sinusoidal buckled shape with amplitude w̃, i.e., how many half-waves
are there?

Solution:
The simply supported conditions imply that the out-of-plane deformation is
zero at the plate edges:

w(±a/2, x2) = w(x1,±a/2) = 0, x1, x2 ∈ (−a/2, a/2). (9.1)

Assuming a sinusoidal shape in each direction xi (i = 1, 2), the displacement is
then either symmetric or anti-symmetric about the centre of the square xi = 0;
the symmetric modes have the form

sin
(nπxi

a

)
n even, (9.2)

while the anti-symmetric modes are

cos
(nπxi

a

)
n odd. (9.3)

Hence, there are four types of buckling modes, depending on whether the dis-
placement is symmetric or anti-symmetric in each direction:

wnm =


w̃ sin

(
nπx1
a

)
sin

(
mπx2

a

)
n,m even,

w̃ sin
(
nπx1
a

)
cos

(
mπx2

a

)
n even, m odd,

w̃ cos
(
nπx1
a

)
sin

(
mπx2

a

)
n odd, m even,

w̃ cos
(
nπx1
a

)
cos

(
mπx2

a

)
n,m odd.

(These modes can also be derived from the expression given in lectures, i.e. equa-
tion 6.127, when a = b and we shift the coordinates so that the origin is
at the square centre.) The fundamental buckling mode, obtained by setting
n = m = 1, is composed of one half-wave in each direction:

w11 = w̃ cos
(πx1

a

)
cos

(πx2
a

)
. (9.4)

We begin by deriving the bending energy Ub in the following questions.

2. Calculate the components of the curvature tensor Kαβ , assuming the out-of-
plane deformation is given by the fundamental (n = 1) buckling mode:

w = w̃ cos
(πx1

a

)
cos

(πx2
a

)
. (9.5)
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Solution:
The curvature tensor is given by

Kαβ = − ∂2w

∂xα∂xβ
. (9.6)

Substituting the above expression for the fundamental buckling mode w gives

K11 = −∂2w

∂x21
=

w̃π2

a2
cos

(πx1
a

)
cos

(πx2
a

)
, (9.7)

K22 = −∂2w

∂x22
=

w̃π2

a2
cos

(πx1
a

)
cos

(πx2
a

)
, (9.8)

K12 = − ∂2w

∂x1∂x2
= − w̃π2

a2
sin

(πx1
a

)
sin

(πx2
a

)
. (9.9)

3. State the bending energy density in terms of the components of the curvature
tensor.

Solution:
From lectures (e.g. section 6.2, page 88), the bending energy density, ub, is given
by

ub = D
[
4H2 − 2(1− ν)KG

]
, (9.10)

where D is the bending stiffness, H is the mean curvature and KG is the Gaussian
curvature of the midsurface. These are given in terms of the curvature tensor
Kαβ :

H =
K11 +K22

2
, KG = K11K22 −K2

12. (9.11)

In terms of the curvature components, we then have

ub = D
[
K2

11 +K2
22 + 2νK11K22 + 2(1− ν)K2

12

]
. (9.12)

4. Using the curvature components Kαβ computed in question 2, calculate the to-
tal bending energy (assuming D is the bending stiffness of the plate). Your
answer should be proportional to w̃2/a2.
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Solution:
The total bending energy is obtained by integrating ub over the plate:

Ub =
1

2

∫ a/2

−a/2

∫ a/2

−a/2
ub dx1dx2

=
D

2

∫ a/2

−a/2

∫ a/2

−a/2

[
K2

11 +K2
22 + 2νK11K22 + 2(1− ν)K2

12

]
dx1dx2.

(9.13)

We substitute the expressions for the components in 9.7–9.9 and simplify using
the integrals:∫ a/2

−a/2

∫ a/2

−a/2
cos2

(πx1
a

)
cos2

(πx2
a

)
dx1dx2 =

a2

4
, (9.14)∫ a/2

−a/2

∫ a/2

−a/2
sin2

(πx1
a

)
sin2

(πx2
a

)
dx1dx2 =

a2

4
. (9.15)

We obtain

Ub =
π4D w̃2

2a2
. (9.16)

We now focus on the stretching energy Us.

5. What conditions do the in-plane displacements u1 and u2 satisfy?
Hint: recall that the plate is simply supported, the origin is at the plate center
(i.e. the domain is symmetric with respect to x1 and x2), and a total displace-
ment u0 is applied in the x1-direction.

Solution:
The applied displacement u0 implies that

u1(±a/2, x2) = ∓u0/2, u2(x1,±a/2) = 0, x1, x2 ∈ (−a/2, a/2). (9.17)

(We note that u1 is of magnitude u0/2 at x1 = ±a/2 since the loading is applied
symmetrically.) The symmetry about the origin implies that the displacement
u1 is anti-symmetric about x1 = 0 (to be consistent with the boundary condi-
tions in 9.17) while u2 is symmetric about x2 = 0, i.e.

u1(−x1, x2) = −u1(x1, x2), u2(x1,−x2) = u2(x1, x2), x1, x2 ∈ (−a/2, a/2).

(9.18)

Since the plate cannot tear or intersect itself at the origin, this symmetry also
implies that the in-plane deformation is zero there:

u1(0, 0) = u2(0, 0) = 0. (9.19)



5

The surface plot below illustrates the antisymmetry and symmetry of u1 = ux
and u2 = uy with respect to x1 and x2 about the plate centre.

6. Derive the components of the in-plane strain tensor Eαβ assuming the following
in-plane deformation:

u1 = q1 sin

(
2πx1
a

)
cos

(πx2
a

)
− ũx1

2
, (9.20)

u2 = q1 cos
(πx1

a

)
sin

(
2πx2
a

)
, (9.21)

where we define the dimensionless end-displacement

ũ =
2u0
a

. (9.22)

In view of your answers to question 5, why is this a reasonable ansatz for u1
and u2?

Solution:
The components of the in-plane stress tensor are

E11 =
∂u1
∂x1

+
1

2

(
∂w

∂x1

)2

, (9.23)

E22 =
∂u2
∂x2

+
1

2

(
∂w

∂x2

)2

, (9.24)

E12 =
1

2

(
∂u2
∂x1

+
∂u1
∂x2

+
∂w

∂x1

∂w

∂x2

)
. (9.25)
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Substituting the above solution ansatz yields

E11 =
2πq1
a

cos

(
2πx1
a

)
cos

(πx2
a

)
− ũ

2
+

π2w̃2

2a2
sin2

(πx1
a

)
cos2

(πx2
a

)
,

(9.26)

E22 =
2πq1
a

cos
(πx1

a

)
cos

(
2πx2
a

)
+

π2w̃2

2a2
cos2

(πx1
a

)
sin2

(πx2
a

)
,

(9.27)

E12 =− πq1
2a

[
sin

(πx1
a

)
sin

(
2πx2
a

)
+ sin

(
2πx1
a

)
sin

(πx2
a

)]
+

π2w̃2

2a2
sin

(πx1
a

)
cos

(πx1
a

)
sin

(πx2
a

)
cos

(πx2
a

)
. (9.28)

The solution ansatz given in 9.20 and 9.21 for u1 and u2 are reasonable: they
are anti-symmetric/symmetric about the origin according to 9.18, and we can
verify that they satisfy the boundary conditions 9.17 and the condition 9.19 at
the plate centre.

7. State the stretching energy in terms of the components of the in-plane strain
tensor, assuming the in-plane stiffness is C. (Note that the derivation is tedious
to do by hand.)

Solution:
We use the expression for the stretching energy density in terms of the strain
components:

us = C
[
E2

11 + E2
22 + 2νE11E22 + 2(1− ν)E2

12

]
. (9.29)

Substituting in the expressions for the components found in the last question,
we obtain the somewhat lengthy result:

us
C

=

[
2πq1
a

cos

(
2πx1
a

)
cos

(πx2
a

)
− ũ

2
+

π2w̃2

2a2
sin2

(πx1
a

)
cos2

(πx2
a

)]2
+

[
2πq1
a

cos
(πx1

a

)
cos

(
2πx2
a

)
+

π2w̃2

2a2
cos2

(πx1
a

)
sin2

(πx2
a

)]2
+ 2ν

[
2πq1
a

cos

(
2πx1
a

)
cos

(πx2
a

)
− ũ

2
+

π2w̃2

2a2
sin2

(πx1
a

)
cos2

(πx2
a

)]
×
[
2πq1
a

cos
(πx1

a

)
cos

(
2πx2
a

)
+

π2w̃2

2a2
cos2

(πx1
a

)
sin2

(πx2
a

)]
+ 2(1− ν)

{
− πq1

2a

[
sin

(πx1
a

)
sin

(
2πx2
a

)
+ sin

(
2πx1
a

)
sin

(πx2
a

)]
+

π2w̃2

2a2
sin

(πx1
a

)
cos

(πx1
a

)
sin

(πx2
a

)
cos

(πx2
a

)}2

.

(9.30)

We derive the total stretching energy by integrating over the plate dimensions:
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Us =
1

2

∫ a/2

−a/2

∫ a/2

−a/2
us dx1dx2. (9.31)

While the expression for us is lengthy, we note that various terms integrate to
zero due to periodicity of the trigonometric functions; the remaining integrals
can be evaluated similarly to 9.14–9.15. The result is

Us =
C

8a2

{
a4ũ2 +

[
π2 (9− ν) q1

2 − π2 (1 + ν) ũw̃2

2
+

64 (1 + ν) q1
2

9

]
a2

+
4π2 (3ν − 5) q1w̃

2

3
a+

5π4w̃4

16

}
. (9.32)

8. Assuming that the total energy is U = Ub + Us, derive an expression for q1.
Hint: use a variational argument, i.e. ∂U/∂q1 = 0.

Solution:
We calculate the partial derivative

∂U

∂q1
=

C

4a

{
q1

[
64 (1 + ν)

9
+ π2 (9− ν)

]
a− 2π2 (5− 3ν) w̃2

3

}
. (9.33)

The stationarity condition ∂U/∂q1 = 0 then gives

q1 =
6π2 (5− 3ν) w̃2

a [64 (1 + ν) + 9π2 (9− ν)]
. (9.34)

We see that the amplitude of the in-plane deformation depends on the out-of-
plane deformation w̃. This coupling between the in-plane strains and out-of-
plane displacement is inherent to the Föppl–von Kármán equations, and will
allow us to solve for the buckling amplitude as a function of the imposed end-
displacement ũ.

9. Hence obtain an equation for the buckled amplitude w̃.
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Solution:
We calculate the partial derivative

∂U

∂w̃
=

π2w̃

a2

{[
5π2w̃2

32
− (1 + ν) a2ũ

8
− (5− 3ν) aq1

3

]
C + π2D

}
. (9.35)

Substituting the above solution for q1 and simplifying,

∂U

∂w̃
=

π2w̃

32a2

{
32π2D − 4(1 + ν)a2Cũ+ π2Cw̃2 45π

2(9− ν)− 64(9ν2 − 35ν + 20)

9π2(9− ν) + 64(1 + ν)

}
.

(9.36)

The amplitude w̃ then satisfies the stationarity condition ∂U/∂w̃ = 0.

10. Noting the different solutions that are possible, sketch how w̃ evolves with ũ.

Solution:
The trivial solution w̃ = 0, representing the unbuckled state, is always a solution
of ∂U/∂w̃ = 0. The other solutions are found by considering when the term in
braces in 9.36 is zero:

32π2D−4(1+ν)a2Cũ+π2Cw̃2 45π
2(9− ν)− 64(9ν2 − 35ν + 20)

9π2(9− ν) + 64(1 + ν)
= 0. (9.37)

Note the form of the three terms on the left-hand side: (i) a constant term;
(ii) a term proportional to ũ with negative coefficient; and (iii) a term that is
proportional to w̃2. It may also be shown that the coefficient of w̃2 is positive,
consistent with our expectation that ∂U/∂w̃ → +∞ as w̃ → +∞. The equation
∂U/∂w̃ = 0 therefore admits real solutions (for which w̃2 > 0) only when ũ is
above the critical value

ũcr =
8π2D

(1 + ν)a2C
, (9.38)

which corresponds to the critical displacement needed for buckling. In dimen-
sional terms, recalling from question 6 that ũ = 2u0/a, the critical displacement
is

u0cr =
4π2D

(1 + ν)aC
. (9.39)
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For example, for an isotropic material with Young’s modulus E and plate thick-
ness h, we have

C =
Eh

1− ν2
, D =

Eh3

12(1− ν2)
, (9.40)

which gives

u0cr =
π2h2

3(1 + ν)a
. (9.41)

The typical behaviour of the solution branches, demonstrating the appearance
of the buckled solution for u0 > u0cr, is shown in the plot below. Note that
while w̃ = 0 is always a solution, it can be shown that it is linearly unstable
above u0cr so that the buckled solution is always observed in practice.
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S 9.0.2 Problem 2: shear buckling
In this problem we consider the following question: given a rectangular plate of side
lengths a and b, what is the shear force N12 that causes the plate to buckle? Note
that the solution ansatz for w used in the previous problem (i.e. equation 9.5) is
no longer applicable, since the deformation due to shear is generally not symmetric
(or anti-symmetric) about the plate centre. However, we can still approximate the
solution in terms of trigonometric functions. In this problem, for simplicity, we will
limit ourselves to the onset of buckling behavior (in which the buckling amplitude is
infinitesimally small). Note that the origin of the coordinate system is now at the
plate corner, as sketched below.

Questions:
1. Compared to the first problem, since we consider only the onset of buckling,

what simplifications can we say about the in-plane displacements (u1, u2) and
the in-plane stress resultants (N11, N22)?

Solution:
Since the buckling amplitude is infinitesimally small, we can linearize the stress
resultants about the stress field associated with the pre-buckled (planar) so-
lution, for which the only non-zero stress resultant is the applied shear, N12.
Moreover, since the in-plane displacements u1 and u2 are zero prior to buckling
(in contrast to Problem 1 where we imposed a non-zero displacement at the
plate boundaries), we can approximate them as zero. This greatly simplifies the
stretching energy calculation.

2. Calculate the total bending energy, assuming the following out-of-plane behav-
ior:

w = q1 sin
(πx1

a

)
sin

(πx2
b

)
+ q2 sin

(
2πx1
a

)
sin

(
2πx2
b

)
. (9.42)

Solution:
Following the same procedure as Problem 1, we first calculate the components
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of the curvature tensor using the above ansatz for w:

K11 = −∂2w

∂x21
=

π2

a2

[
q1 sin

(πx1
a

)
sin

(πx2
b

)
+ 4q2 sin

(
2πx1
a

)
sin

(
2πx2
b

)]
,

(9.43)

K22 = −∂2w

∂x22
=

π2

b2

[
q1 sin

(πx1
a

)
sin

(πx2
b

)
+ 4q2 sin

(
2πx1
a

)
sin

(
2πx2
b

)]
,

(9.44)

K12 = − ∂2w

∂x1∂x2
= −π2

ab

[
q1 cos

(πx1
a

)
cos

(πx2
b

)
+ 4q2 cos

(
2πx1
a

)
cos

(
2πx2
b

)]
.

(9.45)

The total bending energy is then obtained by integrating the bending energy
density ub over the plate; noting that the origin of the coordinate system is now
at the plate corner, this becomes

Ub =
1

2

∫ b

0

∫ a

0
ub dx1dx2

=
D

2

∫ b

0

∫ a

0

[
K2

11 +K2
22 + 2νK11K22 + 2(1− ν)K2

12

]
dx1dx2

=
π4

(
a2 + b2

)2 (
q1

2 + 16q2
2
)
D

8a3b3
. (9.46)

3. What is the total stretching energy in terms of the applied shear N12?

Solution:
The definition of the stretching energy density at the mid-surface is

us = NαβEαβ. (9.47)

As discussed in question 1, since we consider a infinitesimal buckling ampli-
tude, the only non-zero stress resultant is the constant applied shear N12 = N21

(i.e. we ignore the correction of the stress and the non-zero in-plane displace-
ments that arise from the out-of-plane displacement). Noting that we pick up
both the (α, β) = (1, 2) and (α, β) = (2, 1) contributions, we therefore have,
using symmetry of the stress and strain tensors,

us = N12E12 +N21E21 = 2N12E12 = N12
∂w

∂x1

∂w

∂x2
. (9.48)

Substituting for w and simplifying the various integrals of trigonometric func-
tions, the total stretching energy is

Us =
1

2

∫ b

0

∫ a

0
us dx1dx2 = −16

9
N12 q1 q2. (9.49)

4. What is the critical shear force Ncr required to buckle the plate? (Hint: use the
variational arguments for q1 and q2.)
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Solution:
The total energy is,

U = Ub + Us (9.50)

We set the first variation of U with respect to q1 and q2 to zero to arrive at a
system of two coupled equations:

∂U

∂q1
=
π4D

(
a2 + b2

)2
4a3b3

q1 −
16

9
N12 q2 = 0, (9.51)

∂U

∂q2
=− 16

9
N12 q1 +

4π4D
(
a2 + b2

)2
a3b3

q2 = 0. (9.52)

For a non-trivial buckled solution (with at least one of q1 or q2 being non-zero),
we require that the determinant of the coefficient matrix is zero. This leads to[

π4D
(
a2 + b2

)2
a3b3

]2

−
(
16N12

9

)2

= 0. (9.53)

Solving for N12, we obtain the critical value at which buckling occurs:

Ncr =
9π4D

(
a2 + b2

)2
16a3b3

. (9.54)

5. At what aspect ratio does the plate require the least amount of shear to buckle?

Solution:
To explore the dependence of Ncr on the aspect ratio, we imagine fixing b and
set

a = Ab. (9.55)

The critical value 9.54 then becomes

Ncr =
9π4D

16b2

(
1 +A2

)2
A3

. (9.56)

We then consider the graph of the function A 7→ (1+A2)2/A3, as shown in the
plot below. Differentiating shows that this has a single stationary point in the
region A > 0, corresponding to a global minimum, at

A =
√
3,

(
1 +A2

)2
A3

=
16
√
3

9
. (9.57)



13

1 +2
2

3

( 3 ,
16 3

9
)

1 2 3 4 5


4

5

6

7

8

Hence, the critical shear is minimized at an aspect ratio of a =
√
3b, with value

Ncr =
π4

√
3D

b2
. (9.58)

6. Is it possible to solve for q1 and q2 given the assumptions we have made?
Why/why not?

Solution:
To find the amplitude of the buckled solution as a function of applied shear,
we need to consider the effect of the out-of-plane deformation on the in-plane
stretching — this is exactly what we did in Problem 1 for the case of loading
by end-displacement. Specifically, for Problem 2, this will lead to corrections to
the pre-buckled stress field that will depend on q1 and q2.
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Further hints for Problem 1
Questions 1 to 6 can be answered by following Lecture 9 directly.

7. The total stretching energy is

Us = − C

8a2

{
− a4ũ2 +

[
(ν − 9)π2q1

2 +
π2 (ν + 1) ũ w̃2

2
− 64 (ν + 1) q1

2

9

]
a2

− 4 (ν − 5/3)π2 q1w̃
2a− 5π4w̃4

16

}
. (9.59)

8. The solution for q1 is

q1 =
6π2w̃2 (5− 3 ν)

a [9π2 (9− ν) + 64 (ν + 1)]
(9.60)

9. Use the variational argument, i.e. ∂U/∂w̃ = 0, and substitute in the solution
for q1.

10. See the lecture for a qualitatively similar curve.

Further hints for Problem 2
Question 1 can be answered by following Lecture 9 directly.

2. The total bending energy is

Ub =
1

2

∫ b

0

∫ a

0
ub dx1dx2

=
π4D

(
q1

2 + 16q2
2
) (

a2 + b2
)2

8a3b3
.

(9.61)

3. Us can be derived as,

Us = −16

9
N12 q1 q2. (9.62)

4. The critical shear for buckling is

Ncr =
9π4D

(
a2 + b2

)2
16a3b3

. (9.63)

5. Find the minima of Ncr as a function of a while keeping the rest constant.
■
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