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Exercise 9.1
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Problem 1

In lectures, we derived the critical force P, required to buckle a rectangular plate by
assuming the deformed shape is sinusoidal with a certain wavenumber. However, we
did not study the amplitude of the buckled solution. In this studio, we investigate
the post-buckling deformation by considering the in-plane stretching of the plate.
The plate under consideration is square with side length a. We assume all edges are
simply supported and a total in-plane displacement ug is applied symmetrically along
the xi-direction, as sketched above. The origin of the coordinate system is taken to
be the centre of the square.



Questions:
1. What is the function that describes the out-of-plane deformation w(x1,z2) as-
suming a sinusoidal buckled shape with amplitude w, i.e., how many half-waves
are there?

Solution:
The simply supported conditions imply that the out-of-plane deformation is
zero at the plate edges:

w(ta/2,z2) = w(z1,£a/2) =0, x1,22 € (—a/2,a/2). (9.1)

Assuming a sinusoidal shape in each direction z; (i = 1,2), the displacement is
then either symmetric or anti-symmetric about the centre of the square x; = 0;
the symmetric modes have the form

sin (mr:c,) n even, (9.2)
a

while the anti-symmetric modes are

cos <m;$1> n odd. (9.3)

Hence, there are four types of buckling modes, depending on whether the dis-
placement is symmetric or anti-symmetric in each direction:

w sin (”Tfl) sin (mzm) n,m even,

P W sin ("7;9”1) cos (mzm) n even, m odd,
W cos ("?1) sin (m’;m) n odd, m even,
W cos ("7;“31) cos (mzm) n, m odd.

(These modes can also be derived from the expression given in lectures, i.e. equa-
tion 6.127, when a = b and we shift the coordinates so that the origin is
at the square centre.) The fundamental buckling mode, obtained by setting
n =m = 1, is composed of one half-wave in each direction:

w11 = W COS (Lﬁ) Cos (L@) . (9.4)
a

a

We begin by deriving the bending energy U}, in the following questions.

2. Calculate the components of the curvature tensor K,g, assuming the out-of-
plane deformation is given by the fundamental (n = 1) buckling mode:

w =W cos (%) cos (%) . (9.5)



Solution:
The curvature tensor is given by

9w

_&Ea@x‘g'

Kap = (9.6)

Substituting the above expression for the fundamental buckling mode w gives

K= —227? S ﬂ;—f cos (%) cos <777x2>7 (9.7)
Koo = —227%] = ﬁ;—f cos (%) cos (%), (9.8)
=g = (1) (22 o

3. State the bending energy density in terms of the components of the curvature
tensor.

Solution:
From lectures (e.g. section 6.2, page 88), the bending energy density, uy,, is given
by

wp, = D [4H* —2(1 - v)Kg], (9.10)

where D is the bending stiffness, H is the mean curvature and K¢ is the Gaussian
curvature of the midsurface. These are given in terms of the curvature tensor

Kag:

_ K11 + Koo

5 Ka = K11Kay — K. (9.11)

H

In terms of the curvature components, we then have

u, = D [’C%l + K%g + 20K11 K99 + 2(1 = V)IC%Q] . (9.12)

Bending energy density

4. Using the curvature components K,3 computed in question 2, calculate the to-
tal bending energy (assuming D is the bending stiffness of the plate). Your
answer should be proportional to w?/a?.



Solution:
The total bending energy is obtained by integrating wu; over the plate:

a/2 a/2
/ / uy, dridrs
a/2J—a/2
a/2 a/2
/ 1= K%z + 2UK11 K92 + 2(1 — I/)IC%Q] dzidzs.
—a/2J—a/2

(9.13)

We substitute the expressions for the components in 9.7-9.9 and simplify using
the integrals:

a/2 a/2 T T CL2
2 1 2 2
— —2) dz1dzs = — .14

/a/2/—a/2COS ( - )cos ( - ) z1dze = (9.14)

a/2  pra/2 2
/ / sin? ) sin? (@> dzidzy = — (9.15)

a/2J—a/2 a

We obtain
74D 02

_ 1

Ub 2a2 (9 6)

We now focus on the stretching energy Us.

. What conditions do the in-plane displacements w1 and uo satisfy?
Hint: recall that the plate is simply supported, the origin is at the plate center
(i.e. the domain is symmetric with respect to z1 and z9), and a total displace-
ment ug is applied in the x;-direction.

Solution:
The applied displacement ug implies that

ui(£a/2,x9) = Fuo/2, wa(z1,+a/2) =0, z1,22 € (—a/2,a/2). (9.17)

(We note that u; is of magnitude ug/2 at 1 = +a/2 since the loading is applied
symmetrically.) The symmetry about the origin implies that the displacement
uy is anti-symmetric about z; = 0 (to be consistent with the boundary condi-
tions in 9.17) while uy is symmetric about zo = 0, i.e.

ur(—x1,x2) = —ui(z1,x2), uz(x1, —x2) = uz(x1,x2), x1,%2 € (—a/2,a/2).
(9.18)

Since the plate cannot tear or intersect itself at the origin, this symmetry also
implies that the in-plane deformation is zero there:

ul(O, 0) = UQ(O, 0) =0. (9.19)



The surface plot below illustrates the antisymmetry and symmetry of u; = u,
and up = u, with respect to x1 and z about the plate centre.

6. Derive the components of the in-plane strain tensor £, assuming the following
in-plane deformation:

, :
= qusin (25 ) cos (T22) - . (920)
a a 2

2
ug = q1 COS (ﬂ) sin ( 7rx2> ; (9.21)
a a

where we define the dimensionless end-displacement

2ug
U=—. 9.22
: (9:22)
In view of your answers to question 5, why is this a reasonable ansatz for wu

and us?

Solution:
The components of the in-plane stress tensor are
oup 1 [ ow 2
Fh=—+-=— 9.23
1= 5 + 5 ( 8:1:1) 5 (9.23)
duy 1 [ dw\”
Fop=—+_-|—-— 9.24
22 8x2+2(6x2) ) ( )

1 /Ouy Ouy Ow Ow
= | =0t 2
12 2 (8161 + 8213'2 + 81‘1 61‘2) (9 5)



Substituting the above solution ansatz yields

2 2 & )
by = T4 cos [ 21 cos (—m@) _d + T sin? <Lx1> cos? <Lx2) ;
a a a 2 2a? a a
(9.26)
2 ) 2.2
Eoy = T cos <@> Cos g + T cos® (@) sin? (@) ,
a a a 2a2 a a
(9.27)
2 2
By =— ™M [sin (Lx1> sin ( mm) + sin ( le) sin (Wm)]
2a a a a a
2.~92
+ 2% gin <Lx1> cos (L&) sin <7m:2> cos (Ll’z) . (9.28)
2a? a a a a

The solution ansatz given in 9.20 and 9.21 for u; and ug are reasonable: they
are anti-symmetric/symmetric about the origin according to 9.18, and we can
verify that they satisfy the boundary conditions 9.17 and the condition 9.19 at
the plate centre.

. State the stretching energy in terms of the components of the in-plane strain
tensor, assuming the in-plane stiffness is C'. (Note that the derivation is tedious
to do by hand.)

Solution:
We use the expression for the stretching energy density in terms of the strain
components:

us = C (B}, + B3y + 2vE11Epp + 2(1 — v)ER,] . (9.29)

Substituting in the expressions for the components found in the last question,
we obtain the somewhat lengthy result:

2

Ug 2mqy 2mxy TXY a  ma? 9 (TT1 9 (TT2 2
— = CcOos cos (—) — — 4 Sin (—) Ccos (—)
C a a a 2 2a2 a a

2
2rq1 <7r:v1 2773:2 < ) . <7m:2)
ale Cos —
a a 2a2 a

o 2 =2

a 2a2

[27rq1 7Tl’1 (
X COS <
a a

+2(1 - u){ 2‘“ [s‘

a

2 2
+ 2v [ e cos ( mcl) cos <Lx ) _u + v sin? <Lx1) cos? (mcgﬂ
a a a
cos? (T2 ) s (722
—— ) sin® [ —=
a a
> (271’(131) . (7T.CL‘2):|
sin [ —=
a a
2402 o 2
. 1 T1\ . [(TX2 T2
al sin (—) cos ( ) sin (—) cos (—) .
2a? a a a a

)
Jel (5

(9.30)

We derive the total stretching energy by integrating over the plate dimensions:



1 a/2  ra/2
Us = —/ / ug dr1das. (9.31)
2 —a/2 J—a/2

While the expression for ug is lengthy, we note that various terms integrate to
zero due to periodicity of the trigonometric functions; the remaining integrals
can be evaluated similarly to 9.14-9.15. The result is

1+ v) aw? N 64 (1 +v) ¢1° o2
2 9
N 472 (3v — 5) q1w2a N 5rdw?
3 16

C [ 42 2 o T
Uszg{au —i—[w 9—-v)q” —

(9.32)

Stretching energy density
u.=0.01a

8. Assuming that the total energy is U = Uy, + Us, derive an expression for ¢;.
Hint: use a variational argument, i.e. 9U/dq; = 0.

Solution:
We calculate the partial derivative

ou  C 64(1+v) 212 (5 — 3v) w?
o = i S — — . 9.33
0q1  4a { ! [ 9 o (O-v)|a 3 (9:33)
The stationarity condition dU/dq1 = 0 then gives
672 (5 — 3v) w?
q ( ) (9.34)

T al64(1+v)+ 92 (9—v)]

We see that the amplitude of the in-plane deformation depends on the out-of-
plane deformation w. This coupling between the in-plane strains and out-of-
plane displacement is inherent to the Foppl-von Karman equations, and will
allow us to solve for the buckling amplitude as a function of the imposed end-
displacement .

9. Hence obtain an equation for the buckled amplitude w.



Solution:
We calculate the partial derivative

oU _ mw [57*w*  (1+w)d®a  (5—3v)aq
32 8 3

= — — C+m*D¢. (935
ow  a? } o } (9:35)
Substituting the above solution for ¢; and simplifying,

U _ i
oW 32a2

457%(9 — v) — 64(9% — 35v + 20)
327D — 4(1 2Ci + m?Cw? :
{ s (1+v)a“Cu+ n°Cw 9729 — ) + 64(1 + V)

(9.36)

The amplitude w then satisfies the stationarity condition OU/dw = 0.

w @ u.=0.01a

10. Noting the different solutions that are possible, sketch how @ evolves with .

Solution:

The trivial solution @ = 0, representing the unbuckled state, is always a solution
of 0U/0w = 0. The other solutions are found by considering when the term in
braces in 9.36 is zero:

202 45m2(9 — v) — 64(9v? — 35v + 20)

32m2D — 4(1 2Cu
i sl G 972(9 — 1) + 64(1 + v)

=0. (9.37)
Note the form of the three terms on the left-hand side: (i) a constant term;
(ii) a term proportional to @ with negative coefficient; and (iii) a term that is
proportional to @w?. It may also be shown that the coefficient of @? is positive,
consistent with our expectation that QU /0w — +oo as W — +o0o. The equation
OU /0w = 0 therefore admits real solutions (for which @w? > 0) only when @ is
above the critical value

812D
(1+v)a2C’

= (9.38)
which corresponds to the critical displacement needed for buckling. In dimen-
sional terms, recalling from question 6 that 4 = 2ug/a, the critical displacement
is

47D

UQer = m (939)



For example, for an isotropic material with Young’s modulus F and plate thick-
ness h, we have

Eh Ehn3
= D=——" Al
¢ 1—v2’ 12(1 — v2)’ (940)

which gives

w2h?
= — 9.41
UQcr 3(1 + V)a ( )

The typical behaviour of the solution branches, demonstrating the appearance
of the buckled solution for ug > ug.,, is shown in the plot below. Note that
while w = 0 is always a solution, it can be shown that it is linearly unstable
above ug., so that the buckled solution is always observed in practice.
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Problem 2: shear buckling

In this problem we consider the following question: given a rectangular plate of side
lengths a and b, what is the shear force N2 that causes the plate to buckle? Note
that the solution ansatz for w used in the previous problem (i.e. equation 9.5) is
no longer applicable, since the deformation due to shear is generally not symmetric
(or anti-symmetric) about the plate centre. However, we can still approximate the
solution in terms of trigonometric functions. In this problem, for simplicity, we will
limit ourselves to the onset of buckling behavior (in which the buckling amplitude is
infinitesimally small). Note that the origin of the coordinate system is now at the
plate corner, as sketched below.

R
\ 1

e | e
Y T:i_,’ LB

Questions:
1. Compared to the first problem, since we consider only the onset of buckling,
what simplifications can we say about the in-plane displacements (uj,us) and
the in-plane stress resultants (Ny1, Nog)?

Solution:

Since the buckling amplitude is infinitesimally small, we can linearize the stress
resultants about the stress field associated with the pre-buckled (planar) so-
lution, for which the only non-zero stress resultant is the applied shear, Nio.
Moreover, since the in-plane displacements u; and ug are zero prior to buckling
(in contrast to Problem 1 where we imposed a non-zero displacement at the
plate boundaries), we can approximate them as zero. This greatly simplifies the
stretching energy calculation.

2. Calculate the total bending energy, assuming the following out-of-plane behav-

ior:
. T . T . 2’/’1’.%'1 . 27rx2
w = ¢ sin (—) sin (—) + g2sin [ —— | sin . (9.42)
a b a b

Solution:
Following the same procedure as Problem 1, we first calculate the components
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of the curvature tensor using the above ansatz for w:

952 2T 2 2 1
Kin=-29 =" lgsn (ﬁ) sin <@> + 4gz sin < le) sin ( mj2>
a a

ox3  a® | b b
(9.43)
w w[ . ymxiN . (T o (2mz1\ . [ 27mxa\]
Koo = _87953 =12 _ql sin <T) sin <T> + 4q9 sin (a) sin ( ; >
(9.44)
0w 2 T T 27x
= — = —— —_— — 4 [
K12 021075 " [ql cos ( " ) coS ( 5 > + 4q2 cos ( " ) cos <
(9.45)

The total bending energy is then obtained by integrating the bending energy
density up over the plate; noting that the origin of the coordinate system is now
at the plate corner, this becomes

1 b ra
Ub = / / Up da:ldxg
2 0 JO

D b a
== / / [lC%l + Ing + 20K11 K22 +2(1 — V)IC%Q] dzidzo
o Jo

B 7 (a2 + b2)2 (q12 + 16q22) D

YT (9.46)
3. What is the total stretching energy in terms of the applied shear Ni?
Solution:
The definition of the stretching energy density at the mid-surface is
us = NogEqp. (9.47)

As discussed in question 1, since we consider a infinitesimal buckling ampli-
tude, the only non-zero stress resultant is the constant applied shear Nio = Nog;
(i.e. we ignore the correction of the stress and the non-zero in-plane displace-
ments that arise from the out-of-plane displacement). Noting that we pick up
both the (o, 8) = (1,2) and (o, ) = (2,1) contributions, we therefore have,
using symmetry of the stress and strain tensors,

Uus = Ni1oF19 + No1 Eo1 = 2N19FE19 = nggwaw. (948)

T 8@

Substituting for w and simplifying the various integrals of trigonometric func-
tions, the total stretching energy is

1 [ e 16
Us == ug dx1dres = —— Ni2 q1 ¢o. (9.49)

. What is the critical shear force N, required to buckle the plate? (Hint: use the
variational arguments for ¢; and go.)




12

Solution:
The total energy is,

U =U,+ U, (9.50)

We set the first variation of U with respect to ¢; and ¢o to zero to arrive at a
system of two coupled equations:

oU D (a®+?)° 16

8_(]1 _—4a3b3 q1 — §N12 g2 =0, (951)
oU 16 474D (a2 + 2)?
ErS S= §N12 q1 + £3b3 ) q2 =0. (9.52)

For a non-trivial buckled solution (with at least one of ¢ or g2 being non-zero),
we require that the determinant of the coefficient matrix is zero. This leads to

2 2
_ (16N12> _o (9.53)

a3b3

[7T4D (a2 + b2)2
9

Solving for Ny, we obtain the critical value at which buckling occurs:

9riD (a2 + b2)2
Ner = 164303

(9.54)

. At what aspect ratio does the plate require the least amount of shear to buckle?

Solution:
To explore the dependence of N, on the aspect ratio, we imagine fixing b and
set

a = Ab. (9.55)
The critical value 9.54 then becomes

94D (1+ A2)°
Ne=T6@ 8

(9.56)

We then consider the graph of the function A — (1+.42)2/A3, as shown in the
plot below. Differentiating shows that this has a single stationary point in the
region A > 0, corresponding to a global minimum, at

B (1+42)° 16v3
A=13, = (9.57)
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Hence, the critical shear is minimized at an aspect ratio of @ = v/3b, with value

74/3D
b2

Ng = (9.58)
. Is it possible to solve for ¢q; and ¢o given the assumptions we have made?
Why /why not?

Solution:

To find the amplitude of the buckled solution as a function of applied shear,
we need to consider the effect of the out-of-plane deformation on the in-plane
stretching — this is exactly what we did in Problem 1 for the case of loading
by end-displacement. Specifically, for Problem 2, this will lead to corrections to
the pre-buckled stress field that will depend on ¢; and go.
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Further hints for Problem 1
Questions 1 to 6 can be answered by following Lecture 9 directly.

7. The total stretching energy is

w2 (v+1)aw? 64(v+1)q?

c 4-2 2 2
US:—@{—U,U -I—[(V—Q)ﬂ'ql + 5 9
4,4
— 4 (v - 5/3) 7 qriv?a — 5”16“) } (9.59)
8. The solution for ¢ is
6m2@? (5 — 3
@ mw” (5 —3v) (9.60)

- al972 (9 —v) + 64 (v + 1)]

9. Use the variational argument, i.e. 9U/9w = 0, and substitute in the solution
for ¢;.
10. See the lecture for a qualitatively similar curve.

Further hints for Problem 2
Question 1 can be answered by following Lecture 9 directly.

2. The total bending energy is

1 b a
Uy = —/ / up dridxs
2 Jo Jo

9 (9.61)
7D (q1* 4 16¢27) (a® 4 b°)
B 8a3b3 ‘
3. Us can be derived as,
16
US = —3 N12 q1 q2. (962)
4. The critical shear for buckling is
974D (a2 + b?)?
_ S iie 40 (9.63)

o 16a3b?

5. Find the minima of N, as a function of a while keeping the rest constant.

a2
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