

Studio 3: Elasto-gravity Bending

Exercise 3.1 In class, we saw that in the linearized limit of small deformations, the elastic bending energy of a two dimensional sheet with shape $y(x)$ is

$$U[y(x)] = \frac{1}{2} \left[\frac{Ewh^3}{12(1 - \nu^2)} \right] \int_0^l y''^2(x) dx, \quad (3.1)$$

where l is the projected length of the sheet, h is the thickness, w is the width, ν is the Poisson's ratio, and E is the Young's modulus. The term $B = Ewh^3/[12(1 - \nu^2)]$ is often referred to as the bending stiffness, which measures how stiff the sheet is under bending deformations.

For large deformations, the corresponding bending energy is

$$U[\theta(s)] = \frac{1}{2} B \int_0^L \theta'^2(s) ds, \quad (3.2)$$

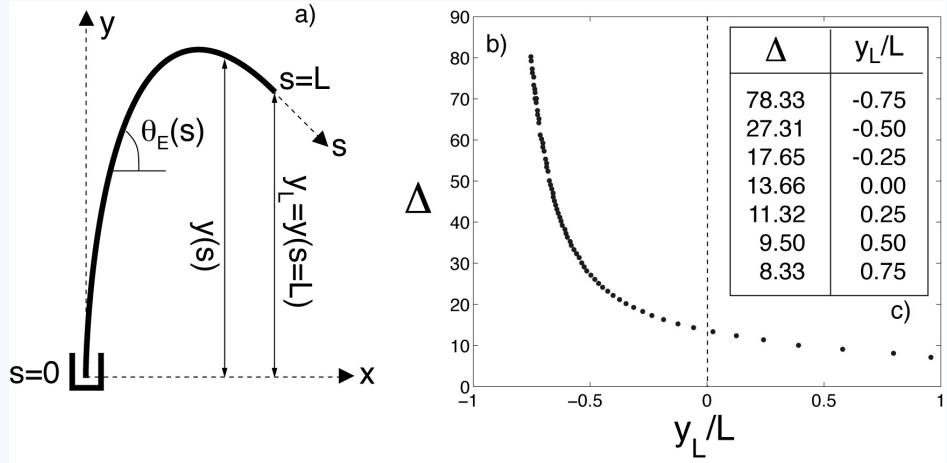
where L is the total length of the sheet, θ is the angle that the sheet makes with the horizontal, and s is the arc length along the neutral surface of the sheet. Eq. (3.2) can be read in *english* as: “*The bending energy of a thin sheet per unit width (U/w) equals one half of the bending modulus (B/w) times the curvature $\theta'(s)$ squared, integrated along its total length.*”

Consider the following configuration. A thin sheet of thickness h , width w , and total length L is clamped vertically at $s = 0$ and is free to bend under gravity otherwise. The boundary conditions are that: 1) the sheet is vertical at the clamp, $\theta(s = 0) = \pi/2$ and 2) there is no curvature at the free end, $\theta'(s = L) = 0$. Assume that the sheet has a linear density (mass per unit length) given by $\rho_l = \rho h w$, where ρ is the volumetric density. A schematic diagram of this configuration is given in the figure below.

Questions:

1. Write the total energy functional, $\mathcal{E}[\theta(s)]$, for this thin strip bent under gravity. Make sure that your expression for the energy only depends on s , $\theta(s)$ and $\theta'(s)$. (*hint: the fact that $dy = \sin \theta ds$, i.e., $y(s) = \int_0^s \sin \theta ds$ will help*).
2. Assuming small functional perturbations, $\delta\theta(s)$, on the equilibrium shape of the beam $\theta_E(s)$, use calculus of variations ($\delta\mathcal{E} \sim \mathcal{E}[\theta_E(s) + \delta\theta(s)] - \mathcal{E}[\theta_E(s)] \rightarrow 0$) to show that the equilibrium shape satisfies the following differential equation

$$B\theta_E''(s) = \rho_l g(L - s) \cos \theta_E(s). \quad (3.3)$$



- a) Schematic diagram of a thin sheet clamped vertically and bending under gravity. The sheet has dimensions: length L , thickness h , and width/span w . Note that y_L is the height of the free end of the sheet at $s = L$. b) Plot of the dimensionless parameters Δ and y_L/L for equilibrium shapes θ_E that satisfy Eq. (3.4). c) Table for some values of Δ versus y_L/L .
3. Non-dimensionalize Eq. (3.3) using L and show that

$$\bar{\theta}_E''(\bar{s}) = \Delta(1 - \bar{s}) \cos \bar{\theta}_E(\bar{s}), \quad (3.4)$$

where $\Delta = (L/L_c)^3$ and L_c is often called the elasto-gravity length. What is L_c in terms of the physical quantities in the problem? What is the physical significance of L_c ?

4. Determine L_c from scaling arguments and ensure that you get the same result as in Question 3.
5. Show that the differential equation in Eq. (3.4) is identical to

$$\frac{1}{2} \bar{\theta}_E'(\bar{s})^2 = \Delta \left[(1 - \bar{s}) \sin \bar{\theta}_E + (\bar{y}(\bar{s}) - \bar{y}_L) \right], \quad (3.5)$$

where $\bar{y}(\bar{s}) = y(s)/L$, $\bar{y}_L = y_L/L$, and $y_L = y(s = L)$ is the height of the free end with respect to the horizontal (see the diagram in Figure (a)). (*hint: it will be easier to go backwards from Eq. (3.5) to Eq. (3.4).*)

6. The differential equation that describes the equilibrium shapes of the bent sheet under gravity – Eq. (3.5) – is nonlinear and therefore one has to solve it numerically to find $\theta_E(s)$ (that yields the equilibrium shapes). One of your friends has done this for you and plotted Δ as a function of y_L/L in Figure (b) (some points of this graph are given in the table, Figure (c)). Develop an experimental method to determine the bending modulus, B/w , of a piece of paper (*hint: you may need only one of the points in the table of Figure (c)*).

7. Using your technique, determine the numerical value of the specific bending modulus B/w for the A4 white paper sheet in the printers of EPFL (*hint: you will need the paper density that you will find written on the label packages of the paper rims. Most likely it will be $\rho_h = 75 \text{ g/m}^2$*).

General hints:

1. The total energy functional is:

$$\mathcal{E}[\theta(s)] = \int_0^L \left[\frac{1}{2} B \theta'^2(s) + \rho_l g (L - s) \sin \theta(s) \right] ds.$$

2. Show that the variation of total energy is given by:

$$\delta \mathcal{E} = \int_0^L [-B \theta'' + \rho_l g (L - s) \cos \theta] \delta \theta ds.$$

3. Remember that $\theta'_E(s) = \bar{\theta}'_E(\bar{s})/L$.

4. Balance the bending and gravitational energies to obtain $L_c = (B/\rho_l g)^{1/3}$.

5. Differentiate both terms of the equation with respect to s and use $\bar{y}'(\bar{s}) = \sin \bar{\theta}_E(\bar{s})$.

6. We have $y_L = 0$ for a sheet length L^* and therefore $B/w = \frac{L^{*3} \rho_l g}{13.66 w}$.

7. With the values given by the problem: $B/w = 3.7 \times 10^{-4} \text{ Nm}$.

■