Exercise 11.1 In this studio, we will use the membrane theory of shells to analyze the
membrane forces in thin shell structures under various loading conditions.

S 11.0.1 Problem 1: Cylindrical shell roofs
In this problem, we consider a cylindrical roof structure, as depicted in the figure
below, which is an open circular cylindrical shell supported along its two straight
edges. We will derive the membrane forces in the roof under its self-weight.

e Parametrize the mid-surface of a cylindrical roof of radius R and
height H in terms of ! = x € [0, H] and 7*> = s € [0, 7R].
From the mapping
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we can derive the covariant base vectors via their definition:
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The normal vector is just the vector product between q; and qa:
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The covariant metric is defined as
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With this metric, there is no distinction between covariant and contravariant
components, and the contravariant base vectors are

q' =ai, (11.6)
@ =q. (11.7)

e Equilibrium equations of the membrane theory for cylindrical shells:
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where N is the membrane force tensor, and f!, f2 and p are the load compo-
nents along the covariant base vectors, q' and q?, and the normal vector, n,
respectively.

Question:

Membrane forces in the roof under its self-weight. ¢ = pgt is the load per unit area
of the shell surface, where p is the density of the material, ¢ is the thickness of the
shell, and g is the gravitational acceleration.

Solution:

We resolve the load ¢ into components along the covariant base vectors, q! and q2,
and the normal vector, n:

f'=—qes-q' =0, (11.11)
f?=—qe3-q* = —qcos }%, (11.12)
p:—qeg-n:—qsin%. (11.13)

From Eqs.(11.10) and (11.13), we can get the circumferential normal force

N2 =pR= —quin% . (11.14)




Substituting for f2 from Eq.(11.12) into Eq.(11.9), we obtain

N12,1=—N22,2—f2=—N§,2—f2=2qcos%. (11.15)

The integral with respect to x of the above equation reads

Ny = N2 =/2qcos%dx=2qcos %x—i—f(s). (11.16)
Considering the symmetry with respect to the shell midspan at x = %, we have
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Then, we can get
f(s) = —qH cos % (11.18)

Therefore, the in-plane shear force is
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Substituting for f! from Eq.(11.11) into Eq.(11.8), we can get

N" 4N, =0, (11.20)
which reads
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The integral with respect to x of the above equation yields
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Applying the boundary conditions at x = 0 and x = H to the above equation,

Nilz=0 =0, (11.23)

Nilo=pr =0, (11.24)
we can get

f(s)=0. (11.25)

Therefore, the axial normal force N7 is
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S 11.0.2] Problem 2: Spherical shell roofs
In this problem, we consider a hemispherical roof structure supported along its equa-
tor, as depicted in the figure below. We will analyze the membrane forces in the roof
under its self-weight.

e Parametrize the mid-surface of a hemispherical shell of radius R in
terms of n' = ¢ € [0, 3] and *> =6 € [0,2).
From the mapping

r(¢,0) = R(singbcosﬁ,sinqﬁsin 6, cos ¢> , (11.27)

we can derive the covariant base vectors via their definition:
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The normal vector is just the vector product between q; and qo:
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The covariant metric is defined as
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and the contravariant metric is
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The contravariant base vectors can be written as
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e Equilibrium equations of the membrane theory for spherical shells:
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—V N2 — 2 =0, (11.36)
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where N is the membrane force tensor, and f!, f2 and p are the load compo-
nents along the covariant base vectors, q' and g2, and the normal vector, n,
respectively.

For axisymmetric systems, we have

Ny=NZ=0| (11.38)

Components of the divergence of a second-order tensor T in spherical coordi-

nates (¢, 6), for an axisymmetric problem (T} = T2 = 0), are given as
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Question:

Compute the membrane forces in the roof under its self-weight, where g = pgt is the
load per unit area of the shell surface, with p denoting the density of the material, ¢
the thickness of the shell, and g the gravitational acceleration.

Solution:
We resolve the load ¢ into components along the covariant base vectors, q' and g2,
and the normal vector, n:

f'=—qes3-q' = %sinqb, (11.41)
fP=—qe3-q° =0, (11.42)
p=—ge3-n=—qgcosg. (11.43)

From Eqs.(11.36) and (11.42), we get

VoN®? = VN2 4+ VoN#2 = N2, =0. (11.44)
Therefore, we have

N3, =0, (11.45)

which is natural for an axisymmetric system.
From Eqs.(11.35) and (11.41), we get

—V, Nl - %sinqﬁ = —V, (81N — %sinqﬁ = 0. (11.46)



Since @' = R~2, we have
—VaoN[* —qRsing =0, (11.47)
which reads
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By multiplying the previous equation by sin ¢, we get

+ qRsing =0. (11.48)

(N sin ¢) 1 — NZcos¢+ qRsin®?¢p=0. (11.49)
From Eqs.(11.37) and (11.43), we obtain

N2 =_N! —qRcos$=0. (11.50)
Substituting the above equation to Eq.(11.49), we have

(N{sing) 1+ Nicos¢+qR=0. (11.51)
Then,

(N{sin? ¢) 1 = —qRsiné. (11.52)

The integral with respect to ¢ of the above equation reads
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Applying the boundary condition at the equator (¢ = 5) to the above equation,

Nilg=z = —qR, (11.54)
we get
C=—qR. (11.55)

Therefore, the meridional force is

qR
Ni=-—_—2"_| 11.56
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From Eq.(11.50), the circumferential force is

N2 = _N} —qRcos¢ = qR( (11.57)
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The distribution of the membrane forces, N{ and N3, along the meridian of the dome
is shown in the figure below. The meridional force, Ni, is compressive, increasing
from —% at the apex to —gR at the bottom of the dome. The circumferential force,
N2, which is compressive near the apex, decreases gradually with the increasing polar
angle and changes sign at ¢* = 51.8°. ¢* denotes the polar angle of the latitude line
on which N2 = 0. Below this line, the circumferential force, N3, is tensile. Spherical
domes whose opening angle is less than ¢* are free from tensile stresses.
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