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Topics

* Introduction to Dynamic Modeling
- What is dynamic modeling
- Why we need dynamic model in Mechanical Engineering
- Dynamic modeling in robotic systems and controls

* Introduction to System Simulations
- Static and dynamic simulations
- General methods for system simulations

« Example

* Modeling and Simulation of Dynamic Systems in MuJoCo

- Basic functions in MudoCo
- Developing XML model file;
- Developing Python simulation controller;

- System identification and optimization in MuJoCo
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What is Dynamic System?

General defination from Webster Distionary:
* Dynamic: A branch of mechanics that deals with forces and their relation

primarily to the motion but sometimes also to the equilibrium of bodies;

e System: A regularly interacting or interdependent group of items forming a
unified whole

Our scope as of robotics and mechanical engineering:
* Dynamic: Change of internal physical varaiables over time: force, velocity,

pressure, fluid flow rate, current, voltage, temperature, etc.

» System: robotic systems and the interacting environments (air, water,
ground, human bodies, granular, gravity, magnetic, etc.)

ME-410 Mechanical product design and development



=PFL _ _ RRL
Why we need dynamic modeling?

Starship prototype reentry and landing Champion-level Drone Racing
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Why we need dynamic modeling?

_ Response or
Input Variable Mathematical | Output Variable
Engineering
Forces and Torques Model Stresses, Strains,
or Deformation
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How Dynamic Modeling can Help?

Design
* Simulate the designate motion, analyze the workspace, load distribution,
verify your design;
* Optimize the design for better performance

Control
* Understand the responds from the system;

e Simulate and optimize the control law

Machine Learning
e Simulation, iterate to train the system
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General Steps for Dynamic System Modeling

1. Define the system
Analyze the system’s degrees of freedom, types of joints, locations, mass and
inertias, end-effector’s functions, etc.

2. Develop kinematic equations: relation between joints and the end-effector
Forward kinematic: x. = x. (q) .
Inverse kinematic: g =q(x})

3. Develop the equations of motion: relationship between forces/torques and
motion

M (q)q+b(q,q) +g(q) =7+J:(q)" F.
4. Solve the equations in time domain for analytical simulation
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Introduction to System Simulation

Goal of Static Simulation
e Structure analysis;
e Stability analysis;
* Design validation

Goal of Dynamic Simulation

Motion analysis;

Control system design and validation;
Trajectory and workspace planning;
Optimization;

Bridge to real-world task
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General methods for system simulations

Static Simulation

Mathematical Simulation: solving mathematical models in Python, Matlab, etc.
CAD softwares: Solidworks, Fusion 360, etc.

Finite Element Analysis(FEA) Softwares: ANSYS, COMSOL, Abaqus, PyChrono, etc.
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General methods for system simulations

Dynamic Simulation
 Mathematical Simulation: solving equations of motion overtime in Python, Matlab
Simulink, etc.
* Pros: Fast, easily applied for simple systems;
* Cons: Hard to apply on complex, non-linear systems;
* Finite Element Analysis(FEA), Computational Fluid Dynamic(CFD), Fluid Structure
Interaction(FSlI) tools: ANSYS, COMSOL, Abaqus, PyChrono, etc.
* Pros: Commercial software, reliable, precise, friendly GUI, good for complex
systems;
* Cons: Commercial software, expensive, slow, hard to integrate to other
functions.
* Physics simulating libraries: MuJoCo, PyBullet, Pynamics, etc.
* Pros: Fast, acceptably precise, easy to integrate to other code/functions;
e Cons: Steep learning curve
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Introduction to MuloGo

MuloCo: Multi-Joint dynamics with Contact, a physics simulator
developed by Google Deep mind

e C/C++ library with a C API;

* Python bindings;

* Unity plug-in

* GPU computation

Application:

* Model-based computations such as control synthesis, state estimation, system
identification, mechanism design, data analysis through inverse dynamics, and
parallel sampling for machine learning applications.

* Traditional simulator, including for gaming and interactive virtual environments.
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Key Features of MuloGo

* General actuation model
* Motors
* Pneumatic and hydraulic cylinders,
* PD controllers
* Biological muscles
* Soft, convex and analytically-invertible contact dynamics
* Interactions with various environments: ground, water,
granular, etc.
 Tendon geometry
* minimum-path-length strings obeying wrapping and via-
point constraints
* Reconfigurable computation pipeline
* Reconfigure your simulation on the fly using build-in flags
* Interactive simulation and visualization
* 3D visualizer, easy for debugging and modeling
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" Example: Control gait optimization RRL

Objective:
Find optimal parameter set in formulas below to achieve fastest object
moving speed

H(t) = hampsin(2nf -t + @) + ho
P(t) = Yampsin(2r f -t + ¢ + o) + o

Search Space:

Parameter Symbol Search Space Unit

Height amplitude hamp [0.005, 0.04] m
Inclination angle amplitude WPamp [0.35,0.79] radian

Frequency f [0.1,0.8] Hz

Resting height ho [0.02,0.04] m
Resting inclination angle o [—0.26, 0.26] radian
Height-inclination phase shift ) [0, 7] or [7,27] radian
Inter-group phase shift ) [0, 27] radian

Tile contact threshold € [0.1,0.5] -
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L = = = o
Example: Gontrol gait optimization

How to get it done:

1. Run mujoco simulation using the suggested
parameters from optimizer;

2. Evaluate the speed of the object;

3. Send it back to optimizer for next iterations;
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"L Example: Control gait optimization RRL

Why it is good?
1. Efficient: no prototyping test needed;

2. Low cost: different objects can be explored, no manufacturing;

3. Generalized solution: you can apply to any other scenarios that requires optimization;

Why it is not good?
1. Sim to real gap: require further calibrations;

2. Not easy for beginners;

3. Overkill if the optimization problem is easy to solve;
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MuloGo File Structure

It takes at least two files to run and control the simulation in MulJoCo:
« XML model file for model;
* Python code for controlling the simulation;
* Simulation asset files (optional)

Model should be developed as a collection of rigid bodies with joints
linked together in a kinematic tree/chain manner.
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General body properties:

e Position: real(3) * Joint:
e Geom * Type: free, ball, slide, hinge
* Type: plane, sphere, capsule, * Pos: real(3)
ellipsoid, cylinder, box, mesh * Axis: real(3)
* Size: real(2) or real(3) e Stiffness: real
 Mesh: optional, if you want to  Damping: real
import your own stl file * Range: real(2)
* Frame orientations: euler real(3) * Frictionloss: real
* Inertial

* mass: real(3)
» diaginertia: real(3)
e pos: real(3)
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" Modeling in XML File

General actuator properties:
* type:
* Motor: torque;
* position;
* velocity;
 damper;
e cylinder: pneumatic or hydraulic cylinders);
* muscle;
e adhesion: injects forces at contacts in the normal direction
* site/joint
* Forcerange: real(2)
* gain
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" Modeling in XML File

General sensor properties:
* type:
e touch: detect contact;
* accelerometer;
* velocimeter;
* BYyro;
e force;
* torque;
* magnetometer;
* site/joint
* noise
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Run simulation in Python

Import library:

. . Read sensor data:
import mujoco

data =

data.sensor(‘SENSOR_NAME').data
Read xml file:

model = mujoco.MjModel.from_xml_path(xml_path)

Controller callback function:
data = mujoco.MjData(model)

def mycontroller (data, vel):
t = data.time
goal_pos = vel*t
data.ctrl[0] = goal_pos /180*np.pi
data.ctrl[1] = goal _pos /180*np.pi
data.ctrl[2] = goal _pos /180*np.pi
return

Set a controller call back:
mujoco.set_mjcb_control(mycontroller)

Run a step of simulation:
mujoco.mj_step(model, data)

Read body position data:
main_body pos = data.body("main_body").xpos
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Demo: robotia_2189

Source: https://github.com/google-
deepmind/mujoco menagerie/tree/main/robotiq
2f85
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" Learning Resources

MuloCo official document: https://mujoco.readthedocs.io/en/latest/overview.html

* Online course: https://pab47.github.io/mujoco.html

* Robot dynamics and simulation Lecture Notes, Allison Okamura, Stanford University:
https://web.stanford.edu/class/me328/lectures/lecture5-dynamics.pdf

* Robot Dynamics Lecture Notes, Robotic Systems Lab, ETH Zurich:
https://ethz.ch/content/dam/ethz/special-interest/mavt/robotics-n-intelligent-systems/rsl-
dam/documents/RobotDynamics2017/RD HS2017script.pdf

 Handbook of Robotics: https://link.springer.com/book/10.1007/978-3-540-30301-5

* Robotics Modelling, Planning and Control: https://link.springer.com/book/10.1007/978-1-84628-642-1
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