Modeling and Simulation of
Dynamic Systems using MuJoCo

Prof. Jamie Paik

Dr. Yuhao Jiang

Reconfigurable Robotics Laboratory
EPFL, Switzerland

I— P e ME-410 Mechanical product design and development P P
- il L wiv

Reconfigurable
Robotics Lab

EPFL _ RRL
Topics

* Introduction to Dynamic Modeling
- What is dynamic modeling
- Why we need dynamic model in Mechanical Engineering
- Dynamic modeling in robotic systems and controls

* Introduction to System Simulations
- Static and dynamic simulations
- General methods for system simulations

« Example

* Modeling and Simulation of Dynamic Systems in MuJoCo

- Basic functions in MudoCo
- Developing XML model file;
- Developing Python simulation controller;

- System identification and optimization in MuJoCo

ME-410 Mechanical product design and development 3

EPFL _ _ RRL
What is Dynamic System?

General defination from Webster Distionary:
* Dynamic: A branch of mechanics that deals with forces and their relation

primarily to the motion but sometimes also to the equilibrium of bodies;

e System: A regularly interacting or interdependent group of items forming a
unified whole

Our scope as of robotics and mechanical engineering:
* Dynamic: Change of internal physical varaiables over time: force, velocity,

pressure, fluid flow rate, current, voltage, temperature, etc.

» System: robotic systems and the interacting environments (air, water,
ground, human bodies, granular, gravity, magnetic, etc.)

ME-410 Mechanical product design and development

=PFL _ _ RRL
Why we need dynamic modeling?

Starship prototype reentry and landing Champion-level Drone Racing

ME-410 Mechanical product design and development >

EPFL _ _ RRL
Why we need dynamic modeling?

_ Response or
Input Variable Mathematical | Output Variable
Engineering
Forces and Torques Model Stresses, Strains,
or Deformation

ME-410 Mechanical product design and development 6

EPFL _] RRL
How Dynamic Modeling can Help?

Design
* Simulate the designate motion, analyze the workspace, load distribution,
verify your design;
* Optimize the design for better performance

Control
* Understand the responds from the system;

e Simulate and optimize the control law

Machine Learning
e Simulation, iterate to train the system

ME-410 Mechanical product design and development 7

EPFL RRL
General Steps for Dynamic System Modeling

1. Define the system
Analyze the system’s degrees of freedom, types of joints, locations, mass and
inertias, end-effector’s functions, etc.

2. Develop kinematic equations: relation between joints and the end-effector
Forward kinematic: x. = x. (q) .
Inverse kinematic: g =q(x})

3. Develop the equations of motion: relationship between forces/torques and
motion

M (q)q+b(q,q) +g(q) =7+J:(q)" F.
4. Solve the equations in time domain for analytical simulation

ME-410 Mechanical product design and development 8

m

P

_
i

L
Introduction to System Simulation

Goal of Static Simulation
e Structure analysis;
e Stability analysis;
* Design validation

Goal of Dynamic Simulation

Motion analysis;

Control system design and validation;
Trajectory and workspace planning;
Optimization;

Bridge to real-world task

ME-410 Mechanical product design and development

RRL

=PrFL

_ _ RRL
General methods for system simulations

Static Simulation

Mathematical Simulation: solving mathematical models in Python, Matlab, etc.
CAD softwares: Solidworks, Fusion 360, etc.

Finite Element Analysis(FEA) Softwares: ANSYS, COMSOL, Abaqus, PyChrono, etc.

SOL KRS W+ Bl 5earch Commands Q @ ® - &F x
Pattern ® Component "‘:‘:' Toines Ceomily : " = ugﬁe -e Lge :
3 Factenerc Speedpak chat ::l-::?
Assombly [Layour | Sketch %
A i3
4 i ;{;’; 2
L 4 B
i :
0.00573%
0.0047628
0.0038263
0.00:8607
0.0 7
0.000%65 7 2
0 Min ™
L
Mation RRalysic B v | e, - i |67 H | @ . ~
|, Geometry A Frint Preview , Report Preview/ | Mo | 30 Views | Miotion Study 1| Motion Study e A b 8
ME-410 Mechanical product design and development

10

EPFL _ _ RRL
General methods for system simulations

Dynamic Simulation
 Mathematical Simulation: solving equations of motion overtime in Python, Matlab
Simulink, etc.
* Pros: Fast, easily applied for simple systems;
* Cons: Hard to apply on complex, non-linear systems;
* Finite Element Analysis(FEA), Computational Fluid Dynamic(CFD), Fluid Structure
Interaction(FSlI) tools: ANSYS, COMSOL, Abaqus, PyChrono, etc.
* Pros: Commercial software, reliable, precise, friendly GUI, good for complex
systems;
* Cons: Commercial software, expensive, slow, hard to integrate to other
functions.
* Physics simulating libraries: MuJoCo, PyBullet, Pynamics, etc.
* Pros: Fast, acceptably precise, easy to integrate to other code/functions;
e Cons: Steep learning curve

ME-410 Mechanical product design and development 11

m

PF RRL

L
Introduction to MuloGo

MuloCo: Multi-Joint dynamics with Contact, a physics simulator
developed by Google Deep mind

e C/C++ library with a C API;

* Python bindings;

* Unity plug-in

* GPU computation

Application:

* Model-based computations such as control synthesis, state estimation, system
identification, mechanism design, data analysis through inverse dynamics, and
parallel sampling for machine learning applications.

* Traditional simulator, including for gaming and interactive virtual environments.

ME-410 Mechanical product design and development 12

EPFL RRL
Key Features of MuloGo

* General actuation model
* Motors
* Pneumatic and hydraulic cylinders,
* PD controllers
* Biological muscles
* Soft, convex and analytically-invertible contact dynamics
* Interactions with various environments: ground, water,
granular, etc.
 Tendon geometry
* minimum-path-length strings obeying wrapping and via-
point constraints
* Reconfigurable computation pipeline
* Reconfigure your simulation on the fly using build-in flags
* Interactive simulation and visualization
* 3D visualizer, easy for debugging and modeling

ME-410 Mechanical product design and development 13

EPFL RRL

ME-410 Mechanical product design and development 14

=Pr

" Example: Control gait optimization RRL

Objective:
Find optimal parameter set in formulas below to achieve fastest object
moving speed

H(t) = hampsin(2nf -t + @) + ho
P(t) = Yampsin(2r f -t + ¢ + o) + o

Search Space:

Parameter Symbol Search Space Unit

Height amplitude hamp [0.005, 0.04] m
Inclination angle amplitude WPamp [0.35,0.79] radian

Frequency f [0.1,0.8] Hz

Resting height ho [0.02,0.04] m
Resting inclination angle o [—0.26, 0.26] radian
Height-inclination phase shift) [0, 7] or [7,27] radian
Inter-group phase shift) [0, 27] radian

Tile contact threshold € [0.1,0.5] -

ME-410 Mechanical product design and development 15

RRL

CPF

L = = = o
Example: Gontrol gait optimization

How to get it done:

1. Run mujoco simulation using the suggested
parameters from optimizer;

2. Evaluate the speed of the object;

3. Send it back to optimizer for next iterations;

16

ME-410 Mechanical product design and development

m

"L Example: Control gait optimization RRL

Why it is good?
1. Efficient: no prototyping test needed;

2. Low cost: different objects can be explored, no manufacturing;

3. Generalized solution: you can apply to any other scenarios that requires optimization;

Why it is not good?
1. Sim to real gap: require further calibrations;

2. Not easy for beginners;

3. Overkill if the optimization problem is easy to solve;

ME-410 Mechanical product design and development 17

EPFL _ RRL
MuloGo File Structure

It takes at least two files to run and control the simulation in MulJoCo:
« XML model file for model;
* Python code for controlling the simulation;
* Simulation asset files (optional)

Model should be developed as a collection of rigid bodies with joints
linked together in a kinematic tree/chain manner.

ME-410 Mechanical product design and development 18

“P*L Modeling in XML File RRL

General body properties:

e Position: real(3) * Joint:
e Geom * Type: free, ball, slide, hinge
* Type: plane, sphere, capsule, * Pos: real(3)
ellipsoid, cylinder, box, mesh * Axis: real(3)
* Size: real(2) or real(3) e Stiffness: real
 Mesh: optional, if you want to Damping: real
import your own stl file * Range: real(2)
* Frame orientations: euler real(3) * Frictionloss: real
* Inertial

* mass: real(3)
» diaginertia: real(3)
e pos: real(3)

ME-410 Mechanical product design and development 21

m

PF RRL

" Modeling in XML File

General actuator properties:
* type:
* Motor: torque;
* position;
* velocity;
 damper;
e cylinder: pneumatic or hydraulic cylinders);
* muscle;
e adhesion: injects forces at contacts in the normal direction
* site/joint
* Forcerange: real(2)
* gain

ME-410 Mechanical product design and development 22

RRL

m

PF

" Modeling in XML File

General sensor properties:
* type:
e touch: detect contact;
* accelerometer;
* velocimeter;
* BYyro;
e force;
* torque;
* magnetometer;
* site/joint
* noise

ME-410 Mechanical product design and development 23

m

PF RRL

L
Run simulation in Python

Import library:

. . Read sensor data:
import mujoco

data =

data.sensor(‘SENSOR_NAME').data
Read xml file:

model = mujoco.MjModel.from_xml_path(xml_path)

Controller callback function:
data = mujoco.MjData(model)

def mycontroller (data, vel):
t = data.time
goal_pos = vel*t
data.ctrl[0] = goal_pos /180*np.pi
data.ctrl[1] = goal _pos /180*np.pi
data.ctrl[2] = goal _pos /180*np.pi
return

Set a controller call back:
mujoco.set_mjcb_control(mycontroller)

Run a step of simulation:
mujoco.mj_step(model, data)

Read body position data:
main_body pos = data.body("main_body").xpos

ME-410 Mechanical product design and development 24

=P RRL

FL
Demo: robotia_2189

Source: https://github.com/google-
deepmind/mujoco menagerie/tree/main/robotiq
2f85

ME-410 Mechanical product design and development 25

https://github.com/google-deepmind/mujoco_menagerie/tree/main/robotiq_2f85

EPF RRL

" Learning Resources

MuloCo official document: https://mujoco.readthedocs.io/en/latest/overview.html

* Online course: https://pab47.github.io/mujoco.html

* Robot dynamics and simulation Lecture Notes, Allison Okamura, Stanford University:
https://web.stanford.edu/class/me328/lectures/lecture5-dynamics.pdf

* Robot Dynamics Lecture Notes, Robotic Systems Lab, ETH Zurich:
https://ethz.ch/content/dam/ethz/special-interest/mavt/robotics-n-intelligent-systems/rsl-
dam/documents/RobotDynamics2017/RD HS2017script.pdf

 Handbook of Robotics: https://link.springer.com/book/10.1007/978-3-540-30301-5

* Robotics Modelling, Planning and Control: https://link.springer.com/book/10.1007/978-1-84628-642-1

ME-410 Mechanical product design and development 26

https://mujoco.readthedocs.io/en/latest/overview.html
https://pab47.github.io/mujoco.html
https://web.stanford.edu/class/me328/lectures/lecture5-dynamics.pdf
https://ethz.ch/content/dam/ethz/special-interest/mavt/robotics-n-intelligent-systems/rsl-dam/documents/RobotDynamics2017/RD_HS2017script.pdf
https://link.springer.com/book/10.1007/978-3-540-30301-5
https://link.springer.com/book/10.1007/978-1-84628-642-1

m
"1

ME-410 Mechanical product design and development

RRL

27

	Modeling and Simulation of Dynamic Systems using MuJoCo
	Topics
	What is Dynamic System?
	Why we need dynamic modeling?
	Why we need dynamic modeling?
	How Dynamic Modeling can Help?
	General Steps for Dynamic System Modeling
	Introduction to System Simulation
	General methods for system simulations
	General methods for system simulations
	Introduction to MuJoCo
	Key Features of MuJoCo
	Example: Control parameters optimization
	Example: Control gait optimization
	Example: Control gait optimization
	Example: Control gait optimization
	MuJoCo File Structure
	Modeling in XML File
	Modeling in XML File
	Modeling in XML File
	Run simulation in Python
	Demo: robotiq_2f85
	Learning Resources
	Questions?

