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=PrL  Steps Towards Sustainable Energy Landscape
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= 50% of required cuts achieved by increasing conversion efficiency
= 27% of primary energy goes into domestic heating and air-conditioning
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=PFL  Domestic Heating:
Comparison of Technology Combinations
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= Heat pumps play key role in reducing energy consumption and CO,
emissions
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Evolution of COP for Heat Pumps

Introduction of scroll
compressor

EHeat
COP =

E Electricity

Source: heat pump test center WPZ

= Since introduction of scroll compressors, COP has been rising slowly
= Key question: can another step-change be achieved and if so, how?
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=PFL  Key Challenges

Water In Water Out

= Assessment of losses in heat pump cycles
« Compression 50%
« Expansion 30%
» Heat transfer 20%

Compression
Stage 2

Throttling 2

~| Economizer- Separator

. Compression
Stage 1
L ?
T

Throttling 1

= Possible ways to reduce losses @
* Increase compressor efficiency ‘—‘
« Use oil-free technology
* Implement multistage cycles

Air OUT

Air IN

= Potential enabler
« Turbocompressors on oil-free bearings
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=PFL  Designing an Oilfree Turbocompressor
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Designing an Oilfree Turbocompressor
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Designing an Oilfree Turbocompressor
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Designing an Oilfree Turbocompressor

Problem Definition

Conceptual Design
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Proof of Concept Single Stage Compressor

= Experimental demonstration of small-scale turbocompressor
* (20 mm impeller, 210 krpm, 2 kW, IT 3.3
* Oil-free, R134a-lubricated bearings
* Increased specific power (x10)
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Proof of Concept Comparison

= Turbocompressor achieves higher peak efficiency than positive
displacement compressor and improves off-design operation
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Potential of Oilfree Turbocompressors on COP

\

+25%
Turbocompressor
Multi-stage

\ + Oilfree

Scroll compressor
Single stage

Oil lubricated
Source: heat pump test center WPZ Il lubricate

= Key question: can another step-change be achieved and if so, how?
= With multi-stage heat pump cycles driven by oilfree turbocompressors
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Design Challenges of High-Speed Turbomachinery

Thrust bearings

Electric motor \

Turtiachinery\

= Pronounced multidisciplinarity

= Strong interactions between components
= Competing design objectives

= High level of design constraints

Journal bearings

= Traditional design approach based on fragmented component view
* Tends to neglect component interactions
« Hindrance to novel solutions
* Yields suboptimal solutions
* Manual iterations leave no peace of mind
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Integrated Design Approach

= Design problem formulated as multi-objective optimization
minf (G) = — [mis (G), T (G)]"

= Subject to constraints

Bearing clearance

Bearing load capacity at low speed
Thrust bearing load capacity

Margin to 1st lateral bending eigenmode
Avoidance of compressor surge
Mechanical stress below threshold
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Muiti-Objective-Optimization *

= Competing objectives result in Pareto curve
» Pareto curve splits objective domain into feasible and non-feasible regions
» Pareto curve is a family of non-dominated solutions
» Selecting “right” objectives can be challenging

Non-feasible

Feasible

Efficiency

Sub-optimal solution

v

Stability
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Search for Pareto Curve

= Evolutionary algorithms
* Procedure is started with initial population of solutions

« Each individual is characterized by genes (variables) and by resulting
performance (indicators)

* Individual are crossed and descendants generated
* Fit solutions are kept, unfit ones discarded

Parents

Properties 1 Variables 1 ProEerties 2 \ariables 2
My r a, BJ ¥ Cl hCI My r a, [3: ¥ C! hc
Properties N Variables N
Descendants ny I’ a, 3,7, C, hy

Generation n

Generation n+1
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Integrated Design and Optimization

'lﬂm-\

I+ 12 points

/1{:::-

/t{

44—

¢« N

Proof of Concept
Component view

= System approach captures complex interactions and improves
compressor performance by 12 points compared to component view

= Are these "right” objectives? What about robustness?
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=PFL  How to Define Design Robustness?

= Maximize hypervolume defined by feasible design within assessed
deviation volume around nominal design

= Maximize signal-to-noise ratio to maximize performance and reduce
variance across hypervolume
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Challenges to Identify Robust Designs

= Increased number of objectives

» |[ncreased number of evaluations to assess
effect of deviation requires fast models

= Need fast and accurate surrogate models

[y
©

Prof. J. Schiffmann



=P

-

B Applied Mechanical Design

L

Neural Network Based Surrogate Model

= |nput is bearing and rotor geometry, output is whirl speed map
= Relative error <3% between high-fidelity and surrogate model
= Surrogate model based on ensemble of networks
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Test Case: Gas Bearing Supported Rotor

Rotor and bearings

/

= Tradeoff between robustness (HV),
losses, and variance (S/N)

0]

= Robustness increased significantly

S/N

= Supports idea of design robustness

» |ncreased robustness offers p
cost savings
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=PFL  Test Case: Deviation Effects on Objectives
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Stability

= Stable operation with radial clearance
" 10+8 um instead of 7£1.5 um

= Excellent agreement between high-fidelity
and surrogate model

= = Baseline model optimization performed on

HPC of EPFL
02 * 96°000 CPU-core-h, € 1°300, 750kWh
0.0 = Surrogate model based optimization

performed on GPU
* 1.5 GPU-h, € 1, 0.5kWh
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Design of Electromechanical Actuators

f_ Gearbox

Motor

/
/

Housing

= Actuators for car industry (ventilation, light, grill, parking brake)
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=PFL  Design of Electromechanical Actuators

= Embodiment & Detailed design = Routine task with manual
optimization

= 1 project manager and 2
specialists working ~ 1 month
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Conceptual Design
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\ Repetitive & tedious = suboptimal
Detail Design
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Integrated Actuator Model

= Modular components
* Physics (motor, gearbox)
* Cost

= 3-D mesh enables identification of constraints
 Triangle-triangle collision detection
« Ray-tracing algorithms

Ease of assembly

Screw gear

é/

Packaging

Internal collisions
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Example: Actuator for Ventilation Flaps

= Optimization for max torque

and min cost 0-21
?
) . g 0.1
= Obtained solutions outperform Z
solution by experienced engineers % oo
=
. . . —0.1
= Pareto optimal solution obtained E
within < 2h on classical laptop oa

" 4 )
Y . o #!"' e 3 stages
1—F J ’l" » 4 stages
4 ./ * + 5 stages
'/ *f =  Existing product
0.155 0.160 0.165 0170 0.175

« Total cost (sim-$)
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Outlook & Next Steps

= Push design automation towards earlier phases of process
= Refine surrogate modeling techniques
= Alternative optimization methodologies

= Computationally cheap digital-twins for real-time monitoring
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