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▪ 50% of required cuts achieved by increasing conversion efficiency
▪ 27% of primary energy goes into domestic heating and air-conditioning

Steps Towards Sustainable Energy Landscape
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▪ Contribute to improve 
energy conversion 
efficiency by research & 
engineering



▪ Heat pumps play key role in reducing energy consumption and CO2
emissions

Domestic Heating: 
Comparison of Technology Combinations
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▪ Since introduction of scroll compressors, COP has been rising slowly
▪ Key question: can another step-change be achieved and if so, how?

Evolution of COP for Heat Pumps
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▪ Assessment of losses in heat pump cycles
• Compression 50%
• Expansion 30%
• Heat transfer 20%

▪ Possible ways to reduce losses
• Increase compressor efficiency
• Use oil-free technology
• Implement multistage cycles

▪ Potential enabler
• Turbocompressors on oil-free bearings

Key Challenges
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Designing an Oilfree Turbocompressor
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Problem Definition
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• Domestic heat pump
• Range of mass-flows, inlet T&P
• Working fluid
• Expected lifetime
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Designing an Oilfree Turbocompressor
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Designing an Oilfree Turbocompressor
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Designing an Oilfree Turbocompressor
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▪ Experimental demonstration of small-scale turbocompressor
• ∅20 mm impeller, 210 krpm, 2 kW, 𝛱 3.3
• Oil-free, R134a-lubricated bearings
• Increased specific power (x10)

Proof of Concept Single Stage Compressor
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▪ Turbocompressor achieves higher peak efficiency than positive 
displacement compressor and improves off-design operation

Proof of Concept Comparison
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▪ Key question: can another step-change be achieved and if so, how?
▪ With multi-stage heat pump cycles driven by oilfree turbocompressors

Potential of Oilfree Turbocompressors on COP
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Source: heat pump test center WPZ

• Turbocompressor
• Multi-stage
• Oilfree

+25%

• Scroll compressor
• Single stage
• Oil lubricated



▪ Pronounced multidisciplinarity
▪ Strong interactions between components
▪ Competing design objectives
▪ High level of design constraints

▪ Traditional design approach based on fragmented component view
• Tends to neglect component interactions
• Hindrance to novel solutions 
• Yields suboptimal solutions
• Manual iterations leave no peace of mind

Design Challenges of High-Speed Turbomachinery
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▪ Design problem formulated as multi-objective optimization

▪ Subject to constraints
• Bearing clearance
• Bearing load capacity at low speed 
• Thrust bearing load capacity
• Margin to 1st lateral bending eigenmode
• Avoidance of compressor surge
• Mechanical stress below threshold

Integrated Design Approach
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▪ Competing objectives result in Pareto curve
• Pareto curve splits objective domain into feasible and non-feasible regions
• Pareto curve is a family of non-dominated solutions
• Selecting “right” objectives can be challenging

Multi-Objective-Optimization
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▪ Evolutionary algorithms
• Procedure is started with initial population of solutions
• Each individual is characterized by genes (variables) and by resulting 

performance (indicators)
• Individual are crossed and descendants generated
• Fit solutions are kept, unfit ones discarded

Search for Pareto Curve
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▪ System approach captures complex interactions and improves 
compressor performance by 12 points compared to component view

▪ Are these ”right” objectives? What about robustness?

Integrated Design and Optimization
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▪ Maximize hypervolume defined by feasible design within assessed 
deviation volume around nominal design

▪ Maximize signal-to-noise ratio to maximize performance and reduce 
variance across hypervolume

How to Define Design Robustness?
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▪ Increased number of objectives 

▪ Increased number of evaluations to assess 
effect of deviation requires fast models

▪ Need fast and accurate surrogate models

Challenges to Identify Robust Designs
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▪ Input is bearing and rotor geometry, output is whirl speed map
▪ Relative error <3% between high-fidelity and surrogate model
▪ Surrogate model based on ensemble of networks

Neural Network Based Surrogate Model
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▪ Tradeoff between robustness (HV),
losses, and variance (S/N)

▪ Robustness increased significantly

▪ Supports idea of design robustness

▪ Increased robustness offers 
cost savings

Test Case: Gas Bearing Supported Rotor
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Rotor and bearings
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only stability



▪ Stable operation with radial clearance 
10±8 m instead of 7±1.5 m

▪ Excellent agreement between high-fidelity 
and surrogate model

▪ Baseline model optimization performed on 
HPC of EPFL

• 96’000 CPU-core-h, € 1’300, 750kWh

▪ Surrogate model based optimization 
performed on GPU

• 1.5 GPU-h, € 1, 0.5kWh

Test Case: Deviation Effects on Objectives 
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▪ Actuators for car industry (ventilation, light, grill, parking brake)

Design of Electromechanical Actuators
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▪ Embodiment & Detailed design

Design of Electromechanical Actuators
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▪ Routine task with manual 
optimization

▪ 1 project manager and 2 
specialists working ~ 1 month

Repetitive & tedious → suboptimal
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▪ Modular components
• Physics (motor, gearbox)
• Cost

▪ 3-D mesh enables identification of constraints
• Triangle-triangle collision detection
• Ray-tracing algorithms

Integrated Actuator Model
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Automated Design Tool
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Multi-objective optimization 
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▪ Optimization for max torque
and min cost

▪ Obtained solutions outperform
solution by experienced engineers

▪ Pareto optimal solution obtained 
within < 2h on classical laptop

Example: Actuator for Ventilation Flaps
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▪ Push design automation towards earlier phases of process

▪ Refine surrogate modeling techniques

▪ Alternative optimization methodologies

▪ Computationally cheap digital-twins for real-time monitoring

Outlook & Next Steps
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Thank you for 
your attention

jurg.schiffmann@epfl.ch

lamd.epfl.ch
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