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Problem 1. (K-means)

1. Problem 4.2 from Chapter 4 of LinAlgebra:

k-means with nonnegative, proportions, or Boolean vectors. Suppose that the vectors {xi}Ni=1 ∈
Rd are clustered using k-means, with group representatives {zj}kj=1 ∈ Rd. Recall the defini-

tion of representative zj as the average of the vectors that belong to cluster j

zj =
1

N j

∑
n∈j

xn,

where N j is the number of vectors that make up the cluster with index j, and n are the
indices of the vectors {xn} belonging to cluster j.

(a) Suppose that the original vectors {xi} are nonnegative, i.e., their entries {xil}dl=1 ≥ 0.
Explain why the representatives {zj} are also nonnegative.

Solution: In this case, the l-th component of zj is defined as

zjl =
1

N j

∑
n∈j

xnl .

Because all components xnl are nonnegative, their sum and therefore their mean is also
nonnegative. It follows that all components of the representatives zj are nonnegative.

(b) Suppose that the original vectors {xi} represent proportions, i.e., their entries are non-
negative and sum to one. (This is the case when xi are word count histograms, for
example.) Explain why the representatives {zj} also represent proportions, i.e., their
entries are nonnegative and sum to one.

Solution: The argument for why the entries are nonnegative follows exactly as above.
The sum of the components of zj can be written as

d∑
l=1

zj =
d∑

l=1

 1

N j

∑
n∈j

xnl

 .

By re-ordering the sums, we find

d∑
l=1

zj =
1

N j

∑
n∈j

d∑
l=1

xnl =
1

N j

∑
n∈j

1 =
N j

N j
= 1

(c) Suppose the original vectors {xi} are Boolean, i.e., their entries are either 0 or 1. Give
an interpretation of zjl , the lth entry of the j group representative.

Solution: From above, we know that the lth component of zj is

zjl =
1

N j

∑
n∈j

xnl

In the case where components of xnl are Boolean, zjl is the fraction of samples in the
cluster for which xnl = 1. We can interpret this as the probability that component l of
a member of the cluster is true, or 1.
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2. A data set X ∈ RN×d is clustered using k-means with mean points for the clusters (group
representatives) M ∈ Rk×d. Suppose that the original data represent proportions, i.e., their
entries are non-zero and sum to one. Taking the ith sample xi ∈ R3, xil ≥ 0 and

∑d
l x

i
l = 1.

Explain why the group representatives µj ∈ Rd also represent proportions, i.e., their entries
are non-negative and sum to one.

Solution: In this case, the l-th, where l = 1, . . . , d, component of µj is defined as

µj
l =

1

N j

∑
xn∈j

xnl ,

where N j is the number of samples in cluster j.

Since all components xnl are nonnegative, their sum and therefore their mean is also nonneg-
ative. It follows that all components of the representatives µj are nonnegative.

The sum of the components of µj can be written as

d∑
l=1

µj =

d∑
l=1

 1

N j

∑
xn∈j

xnl

 .

We can re-order the sums

d∑
l=1

µj =
1

N j

∑
xn∈j

d∑
l=1

xnl =
1

Nj

∑
xn∈j

1 =
Nj

Nj
= 1,

which shows that the entries of µj sum also to one.

3. Read the section “Guessing missing entries” from Section 4.5 of the book. Based on this,
describe how you would fill missing entries in a data matrix.

Solution:

• Separate samples (rows) in the matrix which are complete from those that are incomplete

• Apply the k-means algorithm to the “complete” subset of the data to find the represen-
tatives zj

• Find the nearest representative zj to each sample from the “incomplete” subset of the
data. To compute the distance of a sample in the “incomplete” subset, use the Euclidean
distance corresponding to the dimensions for which there are no missing entries.

• Set the missing entries of each incomplete sample to the value from its corresponding
representative

• Recombine the “complete” and “incomplete” data subsets

4. For “Choosing k” you can read Section 4.3 of the book. What is the cost function that is
being optimized.

Solution:

Let zj be the group representative for cluster j and Gj denote the indices of points belonging
to cluster j. Then, we are considering the K means cost, which is sum of the Euclidean
distances of each data point to the representative of the cluster the point belongs to. Hence,
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J =
1

N

K∑
j=1

∑
i∈Gj

∥xi − zj∥2

Problem 2. (PCA)
We are making measurements of “Points obtained in the exam” and “Time spent on youtube”. Let
Xr ∈ R3×2 be our data matrix with 3 data entries and two features given by:

Xr =

x11 x12
x21 x22
x31 x32

 =

30 1
10 2.5
20 1.5


1. Compute the covariance matrix of Xr ∈ R3×2. Is there a positive or negative correlation

between “Points obtained in the exam” and “Time spent on youtube”? What is the inter-
pretation of the diagonal elements?

Solution: The covariance matrix is given by

C =

(
cov(x1, x1) cov(x1, x2)
cov(x2, x1) cov(x2, x2)

)
,

where cov(xi, xj) =
1

N−1

∑N
n=1(x

n
i − µi)(x

n
j − µj). In the following, we compute µ1, µ2 and

entry cov(x1, x1) of the covariance matrix. The other entries of the covariance matrix are
computed analogously.

µ1 =
1

3
(30 + 10 + 20) = 20

µ2 =
1

3
(1 + 2.5 + 1.5) =

5

3

cov(x1, x1) =
1

2
((30− 20)(30− 20) + (20− 20)(20− 20) + (10− 20)(10− 20)) =

200

2
= 100

Then,

C =

(
100 −7.5
−7.5 0.583

)
The correlation between “Points obtained in the exam” and “Time spent on youtube” is
computed as

corx1,x2 =
cov(x1, x2)√

cov(x1, x1)
√

cov(x2, x2)
= − 7.5√

100
√
0.583

= −0.982,

which is negative. This means that with an increasing time spent on youtube results in a
decrease in points in the exam and vice versa. The diagonal entries correspond to variances
of feature 1 (“Points obtained in the exam”) and feature 2 (“Time spent on youtube”), i.e.,
cov(x1, x1) = V ar(x1) and cov(x2, x2) = V ar(x2).
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2. Standardize the data matrix. Recall, for this you need to subtract the mean of each feature
vector and divide by standard deviation of each feature vector. Call the resulting matrix X.

Note: standardization and normalization terms are sometimes used interchangeably.

Solution: The mean and standard deviation of feature i = 1, 2 is computed as µi =
1
N

∑N
n=1 x

n
i

and σi =

√∑N
n=1(x

n
i −µi)2

N−1 . In our case, we have two features, so i = 1, 2, and N = 3 data
entries.

µ1 =
1

3
(30 + 10 + 20) = 20

σ1 =

√
(30− 20)2 + (10− 20)2 + (20− 20)2

2
=

√
200

2
= 10

µ2 =
1

3
(1 + 2.5 + 1.5) =

5

3

σ2 =

√
(1− 5/3)2 + (2.5− 5/3)2 + (1.5− 5/3)2

2
=

√
0.583.

The resulting standardized matrix X is given by

X =


x1
1−µ1

σ1

x1
2−µ2

σ2
x2
1−µ1

σ1

x2
2−µ2

σ2
x3
1−µ1

σ1

x3
2−µ2

σ2

 =

 1 −0.873
−1 1.091
0 −0.218

 .

3. Compute the first principal component of X.

Solution: First, we compute the eigenvalues of X⊤X by solving the characteristic equation
for the eigenvalues:

p(λ) = det(X⊤X − λI) = 0.

X⊤X − λI =

(
2− λ −1.964
−1.964 2− λ

)

det(X⊤X − λI) = (2− λ)(2− λ)− (−1.964)2 = λ2 − 4λ+ 4− (−1.964)2.

Solving the characteristic equation det(X⊤X − λI) = (2 − λ)(2 − λ) − (−1.964)2 = λ2 −
4λ+ 4− (−1.964)2 = 0 for λ results in the two eigenvalues λ1 = 3.964 and λ2 = 0.036. The
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eigenvector corresponding to λ1 must satisfy X⊤Xv1 = λ1v1, i.e.,(
2 −1.964

−1.964 2

)(
v11
v12

)
= 3.964

(
v11
v12

)
⇐⇒ 2v11 − 1.964v12 = 3.964v11

− 1.964v11 + 2v12 = 3.964v12

⇐⇒ v11 =
−1.964

3.964− 2
v12

v11 =
3.964− 2

−1.964
v12

⇐⇒ v11 = −v12

v11 = −v12

v1 = (−1, 1)⊤ satisfies the above equation and is therefore an eigenvector corresponding to
eigenvalue λ1 = 3.964. An eigenvector v2 = (1, 1)⊤ corresponding to eigenvalue λ2 = 0.036
is computed analogously. After normalization the eigenvectors are v1 = 1√

2
(−1, 1)⊤ and

v2 = 1√
2
(1, 1)⊤. The eigenvectors v1 and v2 are the principal components of X. Since

λ1 = 3.964 ≥ 0.036 = λ2, v1 =
1√
2
(−1, 1)⊤ is the first principal component and v2 =

1√
2
(1, 1)⊤

is the second principal component.

4. Using the first principal component, define the new features A ∈ R3 based on the original
data matrix X ∈ R3×2. Which linear combination of the original data gives rise to these new
features?

Solution: Let i = 1 and set θ1 = v1. We project our data onto the subspace S = ⟨θ1⟩ ⊂ R2,
which is the span of the first eigenvector v1, by computing A = Xθ1.

Xθ1 =

 1 −0.873
−1 1.091
0 −0.218.

 1√
2

(
−1
1

)
=

−1.324
1.479
−0.154

 ∈ R3×1.

A is the new feature.

5. Reconstruct an approximation X̂ ∈ R3×2 to the original matrix using the first principal
component. What is the Frobenius norm of the matrix X − X̂?

Solution: The matrix is reconstructed by computing X̂ = Xθ1θ
⊤
1 which equals:

X̂ = Xθ1θ
⊤
1 =

−1.324
1.479
−0.154

 1√
2

(
−1 1

)
=

 0.936 −0.936
−1.046 1.046
0.109 −0.109.


Compare this with the original matrix and observe that X̂ is close to X:

X =

 1 −0.873
−1 1.091
0 −0.218.


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Furthermore, ∥X − X̂∥2F = trace((X − X̂)⊤(X − X̂)) = 0.036 which is similar to the value of
the second eigenvalue of X⊤X. This can be seen as information lost in our data matrix by
neglecting feature 2 and by projecting our data matrix onto a subspace spanned by the first
principal component.

6. The singular value decomposition of a matrix X ∈ RN×d is given by X = USV ⊤, where
U ∈ RN×N , S ∈ RN×d, V ∈ Rd×d and U , V are orthogonal matrices. The singular values
are the non-zero diagonal entries of S. Verify that V in this decomposition is the matrix
whose columns are the eigenvectors of XTX and the singular values are the square root of
the eigenvalues of X⊤X.

Hint: Simply perform XTX using the SVD decomposition and use the orthogonal properties
of the matrices.

Solution: Following the hint, we compute X⊤X using the SVD composition:

X⊤X = (USV ⊤)⊤(USV ⊤) = V S⊤U⊤USV ⊤ = V S⊤SV ⊤ = V S2V ⊤,

where in the third equality we used that U is orthonormal (U⊤U = I) and in the fourth
equality we used that S is a diagonal matrix (S⊤S = S2). Note that V S2V ⊤ is the eigende-
composition of X⊤X and therefore the columns of V are the eigenvectors of XTX and the
diagonal entries of S2 are the eigenvalues of XTX. Thus, the singular values of X are the
square roots of the eigenvalues of X⊤X.

Problem 3. (Decision trees)
Consider a classification problem with x ∈ R2 and y ∈ {square, triangle}. The training data is
shown in Figure 1 below. There are Nt triangles and Ns squares in the training data, where
Ns = mNt with m ∈ (0, 1). So, for example, if there are 100 triangles, and m = 0.1. then there are
10 red squares and a total of 110 data points.

Figure 1: Classification problem training data

1. A so-called null classifier gives the majority label of the training data to any test point x ∈ R2.
Hence, it considers that x has no effect on the label. Since we have Nt = (1/m)Ns > Ns the
majority label is triangle and the null-classifier labels any test point x as a triangle. What is
the gini index of this classifier? What is the error rate of this classifier on the training data?

Solution. The gini index is m/(1 +m) ∗ 1/(1 +m) + 1/(1 +m) ∗m/(1 +m) = 2m
(1+m)2

. Since

the classifier gets all the squares wrong, its error rate is mNt
(1+m)Nt

= m
1+m .
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2. Now, consider feature 1 and the threshold at x1 = 1 shown in Figure 2 below as a candidate
for forming a split in a first node of a decision tree to be constructed for classification. So,
the split criteria is whether x1 > 1. Suppose that a fraction of c ∈ (0, 1) number of triangles
falls to the right of the line at x1 = 1 shown in the figure. In other words, cNt of triangles
have x1 > 1. Hence, (1 − c)Nt are the number of triangles to the left of the line. Write the
gini index of the two leaves and of the node according to this split.

Figure 2: Classification problem with one node of the decision tree

Solution. The gini index of the leaf resulting from satisfaction of x1 > 1 is 0. This is because
the leaf is pure and all the data points are identified correctly as a triangle. The gini index
of the leaf resulting from NOT satisfying x1 > 1 is as follows.
First, there are (1− c)Nt triangles and mNt squares for a total of (1− c+m)Nt data points
with x1 ≤ 1. Within these data points:
Probability of class triangle is (1− c)Nt/(1− c+m)Nt =

1−c
1−c+m .

Probability (fraction) of class square is mNt/(1− c+m)Nt =
m

1−c+m .

Finally, gini of this leaf is 1−c
1−c+m ∗ m

1−c+m + m
1−c+m ∗ 1−c

1−c+m = 2(1−c)m
(1−c+m)2

.

It follows that the gini index of the node with this split is

0× c

1 +m
+

2(1− c)m

(1− c+m)2
× (1− c+m)

1 +m
=

2(1− c)m

(1 +m)(1− c+m)
.

3. Show that the gini index after the split is smaller than the gini index of the null classifier.

Solution. We need to compare the gini index after the split 2(1−c)m
(1+m)(1−c+m) to that before the

split 2m
(1+m)2

. In particular, we should show that 2m(1−c)
(1−c+m)(1+m) <

2m
(1+m)2

. Now, note that:

m > m(1− c) since 1− c ∈ (0, 1)

⇐⇒ 1− c+m > 1− c+m(1− c) by adding 1− c to both sides of the inequality

⇐⇒ 1

1− c+m
<

1

(1− c)(1 +m)
taking the inverse of above

⇐⇒ 1− c

1− c+m
<

1

1 +m
multiplying both sides by 1− c

⇐⇒ 2m(1− c)

(1− c+m)(1 +m)
<

2m

(1 +m)2

Hence, we arrived at the desired result starting from the fact that (1− c) ∈ (0, 1).
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4. Observe that anywhere you put a line, the number of “triangles” is more than the number of
squares. Thus, show that no matter where you put the blue line, the accuracy of the classifier
does not improve, even though its gini index can improve1

Remark: note that this is the case also if you put the lines horizontally or vertically. In
particular, this shows that gini index could be potentially a more useful criteria for forming
the threshold than accuracy. Note that the performance of the final classifier is measured in
terms of accuracy regardless of the criteria used.

Solution. In any split, you will end up with more triangles than squares on both sides, so that
the final decisions (in the leaves) will always be “triangle”, and the accuracy will always be

1
1+m .

5. Draw the boundaries corresponding to a decision tree that could separate the two classes.

Solution. It will look like a square around the red squares.

Figure 3: Square boundary corresponding to a decision tree

6. What is the depth of the decision-tree that separates these two classes?

Solution. It is a tree of depth 4, since you need 4 decision boundaries to carve it.

7. Your friend suggests to you to use a logistic regression for this classification problem. She
thinks that it is sufficient to consider two feature as Φ1(x1, x2) = x21 + x22 and Φ2(x1, x2) = 1
for the logistic regression problem. How many parameters you would need to learn for the
logistic regression model? What would the decision boundaries look like in this case?

Solution.You would need to learn two parameters, one for each feature, corresponding to a
circular decision boundary with center (0, 0). You can construct your predictor as follows:

(a) You learn the predictor z which can be represented as

z(x1, x2) := w1Φ1(x1, x2) + w2Φ2(x1, x2) = w1

(
x21 + x22

)
+ w2.

(b) You make your prediction based on z(x1, x2) as

ŷ =

{
triangle, z(x1, x2) ≥ 0

square, z(x1, x2) < 0.
(0.1)

1This is one of the motivations of using other criteria than accuracy in defining the decision-trees.
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Note that when z(x1, x2) ≥ 0 which is x21 + x22 ≥ −w2
w1

, and this requires w1 > 0 and w2 < 0
in this case. A potential solution based on optimizing for the weights above could look like
the following picture.

Figure 4: Circular boundary corresponding to logistic regression problem
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