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Approximations dans un modéle EF

Deux types d'approximations :

1. Discretisation geometrique du domaine
= Taille caractéristique h des eléments 7?
= Déetermine le nombre d’élements.

2. Approximation interne dans chaque elément :
= Ordre p des fonctions de base ?
= Determine le nombre de noeuds de chaque elément.

- Comment choisir la taille h et 'ordre p ?
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Compromis précision / coiit de calcul

» Les parametres h et p déterminent le nb. total N de DDLs du modele.
= Quand h diminue (maillage plus fin), N augmente.
= Quand lI'ordre p augmente, N augmente aussi.

= | e cout de calcul pour résoudre le systeme lineaire K.q=r augmente
environ comme O(N3).

= Un critere important est la precision en fonction du cout de calcul.
En pratique, on choisit les parametres (h,p) pour obtenir le meilleur
compromis précision / colt de calcul : une solution precise en un
temps raisonnable.
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Définitions

= Un modele approcheé converge si la solution numérique S tend vers la
solution exacte S quand h —» 0 et p — oo. |l y a convergence si la
formulation numerique est stable et consistante.

» Formulation stable : S tend vers une limite S (stagnation de la solution).

» Formulation stable et aussi consistante : S = S (le modéle numérique résout
le méme probleme que la formulation analytique).

Solution
numerique
S

stabilité

/

_________________________________ - §  Limite numérique
inconsistance I | A _
S Solution exacte

Solution

1/h ou p
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Etude de convergence

Deux sceénarios :

1. Etude théorique par rapport a la solution exacte (analytique) S.

» Quand on développe un code EF et qu’on veut
le valider / étudier ses proprietées de convergence.

» Méthode : varier h ou p, et analyser l'erreur E = ||S — §].
La formulation est consistante si S — S (i.e. E = 0).

| ’ordre de convergence k est tel que E décroit comme hX.

2. Etude pratique sans solution exacte (inconnue).

log(E)

= La plupart des formulations EF sont consistantes = on ne veérifie pas la

consistance de maniere systematique a chaque etude.

= Par contre, la convergence avec h doit toujours étre verifiee.

= Deux méthodes (slides suivants) : calculer (A) I'erreur par rapport au maillage "le

log(1/h)

plus fin possible”, ou (B) la variation relative au fur et a mesure qu’'on raffine.
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Etude de convergence : méthode A

= Varier la taille h (au moins 3 valeurs).
Commencer avec h_.. pour obtenir le
maillage le plus fin possible dans la
limite des ressources disponibles
(temps, memoire, etc).

= Utiliser le maillage le plus fin comme
reference, et analyser I'évolution de
I’erreur relative

ER; = [1S(h) = S(Rrun)Il 7 11S(Pin)II-

» Maillage suffisamment fin quand ER
plus petite qu'un seuil prédéfini (qui
depend des exigences de précision, des
incertitudes, des marges de sécurité etc).

» Méthode couteuse, rarement utilisée.

5(h)

A
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Etude de convergence : méthode B

S(h)
= Commencer avec h, assez grande
(maillage assez grossier) 2 S,(h,)

» Raffiner de maniere significative

(augmenter le nb. de nceuds d'au
moins 50%) =2 S,(h,)

= Utiliser le maillage precedent comme
référence, et analyser I'évolution de la VRA
variation relative

VR, = [|S(h;) - S(h)Il T {IS(hq)ll- ¢

» Maillage suffisamment fin quand VR
plus petite qu'un seuil prédéfini (qui T

hy hy

depend des exigences de précision, des |
incertitudes, des marges de sécurité etc). 1/h

= Méthode couramment utilisée.



Etude de convergence

5(h)

* Graphe de convergence = "assurance
qualite”, qui demontre que la solution
est indépendante du maillage.

= C'est seulement avec un graphe de
convergence guon peut faire
confiance aux resultats.

Modélisation et simulation par €éléments finis



Raffinement local

= Quand on s’interesse a une valeur locale (par ex. contrainte max), il est
possible d'utiliser un raffinement local (h,c, < Agopar):

" En plus de I'etude de convergence avec h,,;, il est recommande de
verifier la convergence avec h

local®
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Etude de convergence : exemple 2D

= Compare différentes formulations 2D (ici contraintes planes)
= Variables : ordre p, taille maillage h, forme eléments, options d’intégration
= Cas test : poutre encastree

= Lx H=250x50mm?, E =100 GPa, v = 0.3, traction T = 1 MPa
= Quantité d’intérét : U, min (déplacement vertical minimum)

Modélisation et simulation par éléments finis
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Etude de convergence : exemple 2D

= Tres grande variabilite si seulement 1-2 eélmts dans I'épaisseur.

* En raffinant, convergence pour toutes les formulations.

U2 min [mm]
o
(0]

50

Nb. eélmts. / épaisseur : 1

Eléments linéaires convergent lentement
(mauvais en flexion / cisaillement).

Elements quadratiques convergent
rapidement (bons des 1-2 élmts / eépaisseur).

25 12.5 6.25 3.125
h [mm]
2 4 3 16

—8—(Quad Linear exact

@+ Quad Linear reduced enh.
—m- Quad Linear reduced std.
—8—Quad Quadratic exact

=@ Quad Quadratic reduced
—o—Tri free Linear exact
—o—Tri free Quadratic exact
-®- Tri free Quadratic modif.
—a&—Tri struct. Linear exact
—&—Tri struct. Quadratic exact

=& Tri struct. Quadratic modif.
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Etude de convergence : exemple 3D

= Compare differentes formulations 3D
= Variables : ordre p, taille maillage h, options d'integration
= Cas test : poutre encastree

p
bbb v b v bbb

s

= L XxXHXxW=100x 10 x 10 mm3, E = 210 GPa, v = 0.3, pression p = 1 MPa

= Quantité d’intérét : U, min (déplacement vertical minimum) et S max
(contraintes Von Mises maximales).
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Etude de convergence : exemple 3D

-0.2

- @ -Hex Linear reduced
—a—Hex Linear exact

- @ -Hex Quadratic reduced
04 —8—Hex Quadratic exact
—a— [et Linear

—A— Tet Quadratic

U2 min [mm]
O
o

Déplacement : |a encore,

- ——————§ les elements quadratiques
0s | JPL L convergent beaucoup plus

| rapidement.
S

+".-'

-1 . ' . .
10 5 2.5 1.25
h [mm]
Nb. élmts. / épaisseur :
1 2 4 8
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Etude de convergence : exemple 3D

500
Contraintes : les elements
400 - q’uadrathues donnent’des |
resultats plus regroupées, MAIS |l
o n'y a pas convergence !
=

(% = 300 - _ ’
s g Contrairement aux déplacements,
g 8 la convergence en contraintes
£ 290 - | n'est pas garantie.
o) S -8 -Hex Linear reduced
g ; —a—Hex Linear exact Ici , d trat
= B - Hex Quadratic reduced cl, presence d'un concentrateur
5 100 - = Hex Quadraticexact F de contraintes au niveau
= —a—Tet Linear de I'encastrement :
‘g + TEt Quad ratic Max: +3.123e+02
© 10 5 2.5 1.25 :
2 h [mm]
‘O
L®;
= Nb. élmts. / épaisseur :

1 2 4 3
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Qu’est-ce qui affecte la convergence ?

* Famille d’elements :
= L’ordre p des fonctions de base.

= | es formulations completes (élmts lagrangiens) sont plus précises que les
formulations incompletes (élmts sérendipiens).

= Forme peu importante.
* Type / position de la quantité d’intéret :
= Déplacements : convergence plus rapide, et garantie.
= Contraintes : convergence moins rapide, et non garantie (singularités).
* Probleme : géométrie, états de contraintes / déformations, conditions limites.

* Qualité du maillage : problémes numériques si éléments distordus ou de
grand rapport d’'aspect.

-> Assurer la convergence d'un modele n'est pas trivial ! || est nécessaire
de demontrer que les resultats sont converges. 17



Pathologies numériques

Selon la formulation numeérique, il est possible que les matrices obtenues
solent mal conditionnées. Deux problemes principaux :

1. Blocage (locking) :
= Peut apparaitre pour des eléments aplatis (grand rapport d’'aspect).
= Rigidité surestimée <~ déformation en cisaillement sous-estimee.

= Typiquement observé pour eléments linéaires avec intéegration exacte
- peut résoudre le probleme avec elements quadratiques et/ou
intégration reduite.

Modélisation et simulation par €éléments finis
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Blocage (locking)

= |llustration : poutre 3D, epaisseur variable
= L=100 mm, W =10 mm, H € [0.1,10] mm, E =210 GPa, v =0.3, p = 1 MPa
= Maillage de 40 x 4 x 4 élements

p
bbb v bbb

T
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- B -Hex Linear reduced
—8— Hex Linear exact

100

—8— Hex Quadratic exact
—a— Tet Quadratic

- B - Hex Quadratic reduced
—a— Tet Linear
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20%

Blocage (locking)
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Pathologies numériques

Selon la formulation numeérique, il est possible que les matrices obtenues
solent mal conditionnées. Deux problemes principaux :

2. "Mécanismes” ou modes "sablier” (hourglass)
= Peuvent apparaitre avec integration reduite.

= Modes d'énergie de deformation nulle : les points d'integration "voient" une
déformation nulle méme si le déplacement global n'est pas nul.

= Plus souvent observés pour des maillages grossiers structures - peut
resoudre le probleme avec integration exacte, et/ou maillage plus fin,
et/ou maillage non structure.

Modélisation et simulation par €éléments finis
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Non-zero nodal displacement

g e L L L L A e )
C
o ®
Integration point:
zero strain A
s SRR L 0y

Hourglass mode in linear reduced integration FE

Modes parasites, de rigidité apparente nulle : une force peut créer un
déplacement non nul aux nceuds mais nul aux points d'integration
-> pas d’énergie de deformation, pas de rigidite.
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Choix de la formulation EF

= Critere : mellleurs resultats globaux et meilleur robustesse.

= Recommandations :
= Choisir des elements quadratiques.

= Utiliser par defaut I'integration réduite. Sur des maillages grossiers structureés,
preferer I'intégration exacte (pour eviter modes sablier).

= Pour une bonne préecision en flexion, utiliser hexaedres / prismes avec plus
d'un elément dans I'épaisseur.

= Développer sa propre expérience en faisant des tests de convergence !

Modélisation et simulation par €éléments finis
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Etude de convergence

Une fois le type d’élément choisi, il faut toujours demontrer la
convergence du modele avec le maillage (raffinement en h).

= Choisir la quantite "output" et la region les plus pertinentes, en fonction

du probleme. (Par ex., pour dimensionner une piéce part a partir des
contraintes Von Mises max, utiliser cette quantite comme critere.)

= Raffiner le maillage (globalement et localement). Au moins 3 maillages
différents, de tailles assez difféerentes (au moins 50% de variation sur le
nombre de noceuds).

= Tracer I'évolution de I""output” avec h (et/ou avec le nombre de nceuds).

= Evaluer le compromis cout / precision :
= Quelle est la précision requise (estimation réaliste) ?
= Quel est le temps de calcul max. acceptable ?

m
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Méthodologie : résumé

Comment choisir les parametres h et p d'un modele EF ?

1. Choisir la formulation en fonction du probleme et des considéerations
de maillage. Pour une analyse en contraintes, toujours choisir des
elements quadratiques

2. Optionnel mais recommandeé : verifier lI'influence du schéma
d’integration numeérique.

3. Faire une étude de convergence baseée sur un output pertinent.
4. Choisir un maillage adapte (compromis cout / precision).

Modélisation et simulation par €éléments finis
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Démonstration : étude de convergence en /1
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