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Modélisation et simulation 
par éléments finis
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Deux types d’approximations :

1. Discrétisation géométrique du domaine :
 Taille caractéristique h des éléments ?
 Détermine le nombre d’éléments.

2. Approximation interne dans chaque élément :
 Ordre p des fonctions de base ? 
 Détermine le nombre de nœuds de chaque élément.

 Comment choisir la taille h et l’ordre p ?

Approximations dans un modèle EF
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Raffinement en h
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Raffinement en p



M
od

él
is

at
io

n 
et

 s
im

ul
at

io
n 

pa
r é

lé
m

en
ts

 fi
ni

s

5

 Les paramètres h et p déterminent le nb. total N de DDLs du modèle. 
 Quand h diminue (maillage plus fin), N augmente.
 Quand l’ordre p augmente, N augmente aussi.
 Le coût de calcul pour résoudre le système linéaire K.q=r augmente 

environ comme O(N3).

 Un critère important est la précision en fonction du coût de calcul.           
En pratique, on choisit les paramètres (h,p) pour obtenir le meilleur 
compromis précision / coût de calcul : une solution précise en un              
temps raisonnable.

Compromis précision / coût de calcul
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 Un modèle approché converge si la solution numérique 𝑆𝑆 tend vers la 
solution exacte 𝑆̂𝑆 quand h → 0 et p→ ∞. Il y a convergence si la 
formulation numérique est stable et consistante.

Définitions

Solution exacte

Solution 
numérique

Limite numérique

1/h ou p

𝑆̂𝑆
𝑆̃𝑆

𝑆𝑆

 Formulation stable : 𝑆𝑆 tend vers une limite 𝑆̃𝑆 (stagnation de la solution).
 Formulation stable et aussi consistante : 𝑆̃𝑆 = 𝑆̂𝑆 (le modèle numérique résout 

le même problème que la formulation analytique).

stabilité

inconsistance
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Deux scénarios :
1. Etude théorique par rapport à la solution exacte (analytique) 𝑆̂𝑆. 

 Quand on développe un code EF et qu’on veut 
le valider / étudier ses propriétés de convergence.

 Méthode : varier h ou p, et analyser l’erreur 𝐸𝐸 = 𝑆𝑆 − 𝑆̂𝑆 .                                         
La formulation est consistante si 𝑆̃𝑆 → 𝑆̂𝑆 (i.e. 𝐸𝐸 → 0).                                                                             
L’ordre de convergence k est tel que 𝐸𝐸 décroît comme hk.

Etude de convergence

1/h ou p
𝑆̂𝑆
𝑆̃𝑆

𝑆𝑆

log(1/h)

log(E)
1

k

2. Etude pratique sans solution exacte (inconnue).
 La plupart des formulations EF sont consistantes  on ne vérifie pas la 

consistance de manière systématique à chaque étude.
 Par contre, la convergence avec h doit toujours être vérifiée.
 Deux méthodes (slides suivants) : calculer (A) l’erreur par rapport au maillage "le 

plus fin possible", ou (B) la variation relative au fur et à mesure qu’on raffine.
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 Varier la taille h (au moins 3 valeurs). 
Commencer avec hmin pour obtenir le 
maillage le plus fin possible dans la 
limite des ressources disponibles 
(temps, mémoire, etc). 

 Utiliser le maillage le plus fin comme 
référence, et analyser l’évolution de 
l’erreur relative                                                 

ERi = ||S(hi) - S(hmin)|| / ||S(hmin)||.
 Maillage suffisamment fin quand 𝐸𝐸𝐸𝐸

plus petite qu’un seuil prédéfini (qui 
dépend des exigences de précision, des 
incertitudes, des marges de sécurité etc). 
 Méthode coûteuse, rarement utilisée.

Etude de convergence : méthode A 

1/h

seuil

ER

𝑆𝑆(ℎ)

𝑆𝑆(ℎmin)

ℎ1 ℎ2 . . . ℎmin
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 Commencer avec h1 assez grande 
(maillage assez grossier)  S1(h1)
 Raffiner de manière significative

(augmenter le nb. de nœuds d’au 
moins 50%)  S2(h2)
 Utiliser le maillage précédent comme 

référence, et analyser l’évolution de la 
variation relative                                          

VRi = ||S(hi) - S(hi-1)|| / ||S(hi-1)||.
 Maillage suffisamment fin quand 𝑉𝑉𝑉𝑉

plus petite qu’un seuil prédéfini (qui 
dépend des exigences de précision, des 
incertitudes, des marges de sécurité etc). 
 Méthode couramment utilisée.

Etude de convergence : méthode B 

1/h

VR

𝑆𝑆(ℎ)

ℎ1 ℎ2 . . .

seuil
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 Graphe de convergence = "assurance 
qualité", qui démontre que la solution 
est indépendante du maillage.
 C’est seulement avec un graphe de 

convergence qu’on peut faire 
confiance aux résultats.

Etude de convergence 

1/h

VR

𝑆𝑆(ℎ)

ℎ1 ℎ2 . . .

seuil
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 Quand on s’intéresse à une valeur locale (par ex. contrainte max), il est 
possible d’utiliser un raffinement local (hlocal < hglobal).

 En plus de l’étude de convergence avec hglobal, il est recommandé de 
vérifier la convergence avec hlocal.

Raffinement local
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 Compare différentes formulations 2D (ici contraintes planes)
 Variables : ordre p, taille maillage h, forme éléments, options d’intégration 
 Cas test : poutre encastrée

 L x H = 250 x 50 mm2, E = 100 GPa, 𝜈𝜈 = 0.3, traction T = 1 MPa
 Quantité d’intérêt : U2 min (déplacement vertical minimum)

Etude de convergence : exemple 2D 
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Etude de convergence : exemple 2D 

Nb. élmts. / épaisseur : 1 2 4                     8                     16

Eléments linéaires convergent lentement 
(mauvais en flexion / cisaillement). 

Eléments quadratiques convergent 
rapidement (bons dès 1-2 élmts / épaisseur).

 Très grande variabilité si seulement 1-2 élmts dans l’épaisseur.
 En raffinant, convergence pour toutes les formulations.
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 Compare différentes formulations 3D
 Variables : ordre p, taille maillage h, options d’intégration 
 Cas test : poutre encastrée

 L x H x W = 100 x 10 x 10 mm3, E = 210 GPa, 𝜈𝜈 = 0.3, pression p = 1 MPa
 Quantité d’intérêt : U2 min (déplacement vertical minimum) et S max 

(contraintes Von Mises maximales).

Etude de convergence : exemple 3D
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Etude de convergence : exemple 3D

Déplacement : là encore, 
les éléments quadratiques
convergent beaucoup plus 
rapidement.

Nb. élmts. / épaisseur : 
1 2 4 8
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Etude de convergence : exemple 3D

Nb. élmts. / épaisseur : 
1 2 4 8

Contraintes : les éléments 
quadratiques donnent des 
résultats plus regroupés, MAIS il 
n’y a pas convergence ! 

Contrairement aux déplacements, 
la convergence en contraintes
n’est pas garantie.

Ici, présence d’un concentrateur 
de contraintes au niveau                         
de l’encastrement :
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 Famille d’éléments :
 L’ordre p des fonctions de base.
 Les formulations complètes (élmts lagrangiens) sont plus précises que les 

formulations incomplètes (élmts sérendipiens).
 Forme peu importante.

 Type / position de la quantité d’intérêt :
 Déplacements : convergence plus rapide, et garantie.
 Contraintes : convergence moins rapide, et non garantie (singularités).

 Problème : géométrie, états de contraintes / déformations, conditions limites.
 Qualité du maillage : problèmes numériques si éléments distordus ou de 

grand rapport d’aspect.

 Assurer la convergence d’un modèle n’est pas trivial ! Il est nécessaire 
de démontrer que les résultats sont convergés.

Qu’est-ce qui affecte la convergence ?
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Selon la formulation numérique, il est possible que les matrices obtenues 
soient mal conditionnées. Deux problèmes principaux :

1. Blocage (locking) : 
 Peut apparaître pour des éléments aplatis (grand rapport d’aspect). 
 Rigidité surestimée ↔ déformation en cisaillement sous-estimée. 
 Typiquement observé pour éléments linéaires avec intégration exacte       
 peut résoudre le problème avec éléments quadratiques et/ou 
intégration réduite.

Pathologies numériques 
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 Illustration : poutre 3D, épaisseur variable 
 L = 100 mm, W = 10 mm, H ∈ [0.1,10] mm, E = 210 GPa, 𝜈𝜈 = 0.3, p = 1 MPa
 Maillage de 40 x 4 x 4 éléments 

Blocage (locking)

W/H=1 W/H=10 W/H=100
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Blocage (locking)

Blocage avec 
élmts linéaires + 
intégration exacte
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Selon la formulation numérique, il est possible que les matrices obtenues 
soient mal conditionnées. Deux problèmes principaux :

2. "Mécanismes" ou modes "sablier" (hourglass)
 Peuvent apparaître avec intégration réduite.
 Modes d’énergie de déformation nulle : les points d’intégration "voient" une 

déformation nulle même si le déplacement global n’est pas nul.
 Plus souvent observés pour des maillages grossiers structurés  peut 

résoudre le problème avec intégration exacte, et/ou maillage plus fin, 
et/ou maillage non structuré.

Pathologies numériques
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Modes parasites, de rigidité apparente nulle : une force peut créer un 
déplacement non nul aux nœuds mais nul aux points d’intégration                    
 pas d’énergie de déformation, pas de rigidité.

Modes sablier

Exemple :
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 Critère : meilleurs résultats globaux et meilleur robustesse.

 Recommandations : 
 Choisir des éléments quadratiques.
 Utiliser par défaut l’intégration réduite. Sur des maillages grossiers structurés, 

préférer l’intégration exacte (pour éviter modes sablier).
 Pour une bonne précision en flexion, utiliser hexaèdres / prismes avec plus 

d’un élément dans l’épaisseur.
 Développer sa propre expérience en faisant des tests de convergence !

Choix de la formulation EF
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Une fois le type d’élément choisi, il faut toujours démontrer la 
convergence du modèle avec le maillage (raffinement en h).
 Choisir la quantité "output" et la région les plus pertinentes, en fonction 

du problème. (Par ex., pour dimensionner une pièce part à partir des 
contraintes Von Mises max, utiliser cette quantité comme critère.)
 Raffiner le maillage (globalement et localement). Au moins 3 maillages 

différents, de tailles assez différentes (au moins 50% de variation sur le 
nombre de nœuds).
 Tracer l’évolution de l’"output" avec h (et/ou avec le nombre de nœuds).
 Evaluer le compromis coût / précision :
 Quelle est la précision requise (estimation réaliste) ?
 Quel est le temps de calcul max. acceptable ?

Etude de convergence 
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Comment choisir les paramètres h et p d’un modèle EF ?
1. Choisir la formulation en fonction du problème et des considérations 

de maillage. Pour une analyse en contraintes, toujours choisir des 
éléments quadratiques

2. Optionnel mais recommandé : vérifier l’influence du schéma 
d’intégration numérique.

3. Faire une étude de convergence basée sur un output pertinent.
4. Choisir un maillage adapté (compromis coût / précision).

Méthodologie : résumé
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Démonstration : étude de convergence en h
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