

Thermo-mechanics

Modélisation et simulation
par éléments finis

Edouard Boujo
Printemps 2024

Four types of “thermo-mechanics”

1. Thermal only

Thermal problem

Temperature $T(x)$

2. Uncoupled mechanical

Known $T(x)$ field

Mechanical pb
(elastic + thermal strain)

Displacement $u(x)$

3. One-way coupling

Thermal problem

Temperature $T(x)$

Mechanical pb
(elastic + thermal strain)

Displacement $u(x)$

4. Fully coupled

Thermal problem
(with mech. dissipation)

+

Mechanical pb
(elastic + thermal strain)

Temperature $T(x)$ &
displacement $u(x)$

Today's demo (piston)

Example (thermal switch)
+ Exo 9 (bearing support)

Four types of “thermo-mechanics”

1. Thermal only

Thermal problem

Temperature $T(x)$

2. Uncoupled mechanical

Known $T(x)$ field

Mechanical pb
(elastic + thermal strain)

Displacement $u(x)$

3. One-way coupling

Thermal problem

Temperature $T(x)$

Mechanical pb
(elastic + thermal strain)

Displacement $u(x)$

4. Fully coupled

Thermal problem
(with mech. dissipation)

+

Mechanical pb
(elastic + thermal strain)

Temperature $T(x)$ &
displacement $u(x)$

In Abaqus:

1 step:
“heat transfer”

1 step:
“static”

2 steps:
“heat transfer” → “static”

1 step:
“coupled temp.-displ.”

Thermal and mechanical problems

Thermal problem

Heat equation:

$$\rho c_p \frac{\partial T}{\partial t} + \nabla \cdot (\lambda \nabla T) = s$$

|
"conductivité thermique"
(coefficient de diffusion)

Mechanical pb (elastic + thermal strain)

Total strain:

$$\varepsilon = \nabla u = \varepsilon^{el} + \varepsilon^{th} = \varepsilon^{el} + \alpha \Delta T$$

|
coefficient d'expansion th.

Force equilibrium
(+ Hooke's law):

$$\begin{aligned} 0 &= \nabla \cdot \sigma + f \\ &= \nabla \cdot (C \varepsilon^{el}) + f \\ &= \nabla \cdot (C [\nabla u - \alpha \Delta T]) + f \end{aligned}$$

Thermal and mechanical problems

Thermal problem

Heat equation:

$$\rho c_p \frac{\partial T}{\partial t} + \nabla \cdot (\lambda \nabla T) = s$$

Influence of deformations on the thermal problem
($s(\varepsilon)$ = heat source due to deformations)

Mechanical pb (elastic + thermal strain)

Total strain:

$$\varepsilon = \nabla u = \varepsilon^{el} + \varepsilon^{th} = \varepsilon^{el} + \alpha \Delta T$$

Force equilibrium
(+ Hooke's law):

$$\begin{aligned} 0 &= \nabla \cdot \sigma + f \\ &= \nabla \cdot (C \varepsilon^{el}) + f \\ &= \nabla \cdot (C [\nabla u - \alpha \Delta T]) + f \end{aligned}$$

Influence of temperature on the mechanical problem

Thermal loading in stress analysis

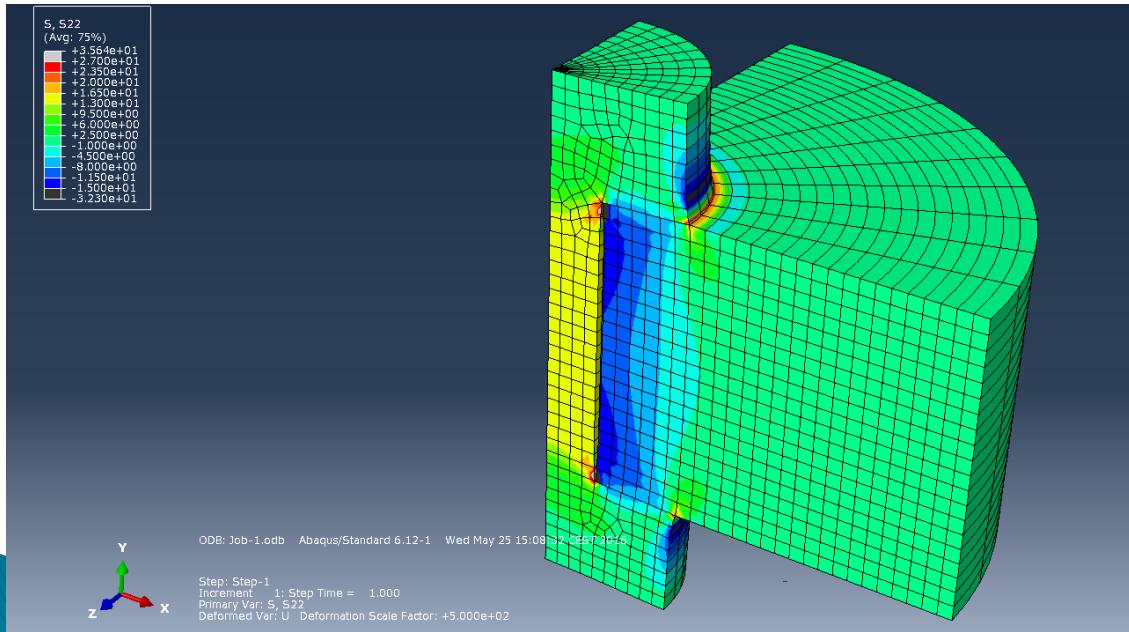
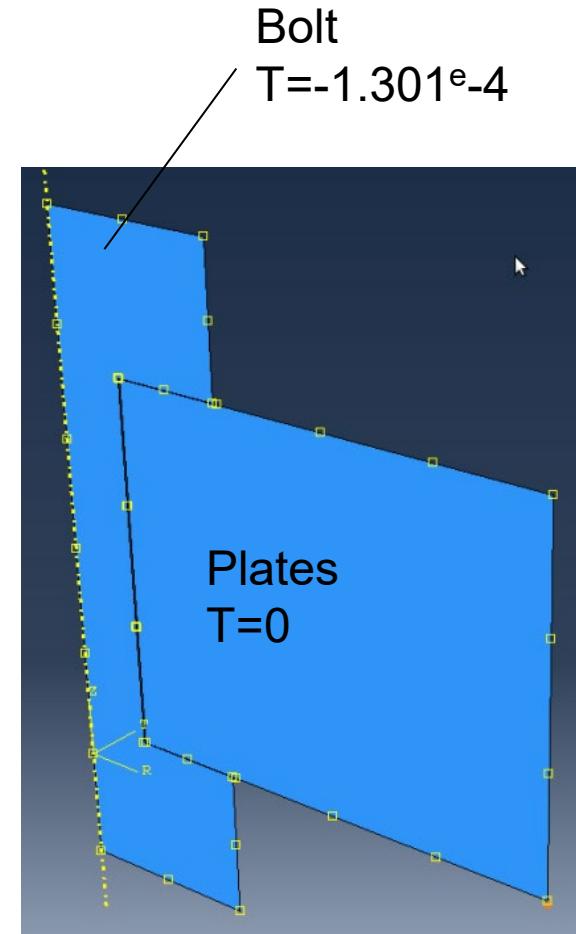
How to model thermal loading in static analysis:

- ▶ Step= static, as usual
- ▶ Define material properties:
 - Coefficient of thermal expansion (“expansion”), α
 - Reference temperature corresponding to zero stress state, = 0 by default
- ▶ Loads:
 - Temperature field $T(x)$ can be defined in static stress analysis using Load=>Predefined fields=>Other=> Temperature
- ▶ Modeling preloads:
 - Very useful to define preloads in components:
 - Compute the strain ε_{th} corresponding to the preload
 - Specify a CTE $\alpha=1$ and a temperature change of the preloaded part $\Delta T = \varepsilon_{th}$ such that then $\varepsilon_{th} = \alpha \Delta T$

Thermal loading in stress analysis

Example: preloaded M8x20 bolt

- ▶ Preload = 1000N, $E = 210 \text{ GPa}$
- ▶ Equivalent section of M8 bolt = 36.6 mm^2
- ▶ Prestress = $1000/36.6 = 27.3 \text{ MPa}$
- ▶ Prestrain = $27.3/210\text{e}3 = 1.301\text{e}-4$
- ▶ Alpha = 1, $dT = -1.301\text{e}-4$ (contraction)



Thermal problem

► Variables

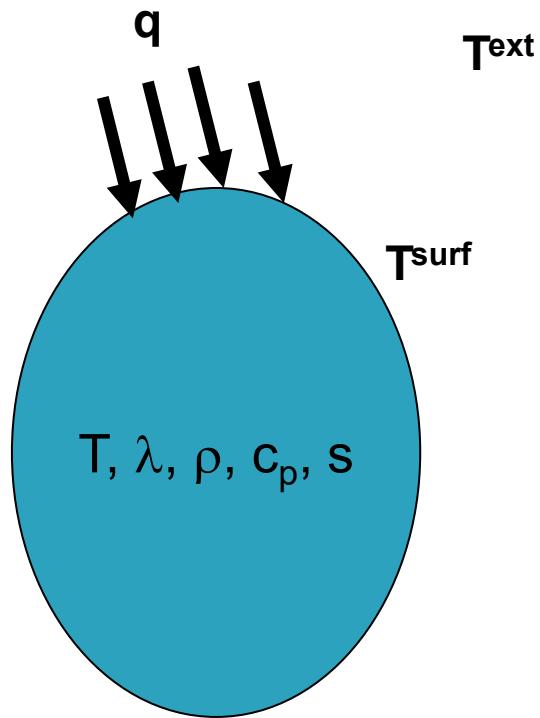
- Essential variable: Temperature field T
- Natural variable: heat flux q

► Material

- Conductivity λ
- Density ρ & specific heat c_p if transient
- Expansion coefficient for stress analysis

► Boundary conditions:

- Temperature: $T^{\text{surf}} = f(t, x)$
- Surface heat fluxes:
 - Imposed heat flux $q^{\text{surf}} = f(t, x)$
 - Convection: $q^{\text{surf}} = h (T^{\text{surf}} - T^{\text{ext}}(t))$
- Volume heat source: $s = f(t)$



Thermal problem in Abaqus

- ▶ Select Step = **Heat transfer**
 - Choose **steady state or transient**
 - If transient: set time period, set small initial increment, set max ΔT per increment (<1/10 of max ΔT)
- ▶ In Mesh:
 - select **element type: Heat transfer, linear**
- ▶ Loading:
 - If steady, need to **impose at least one temperature** (otherwise “thermal rigid body”).
 - **Adiabatic interface: leave free = no flux!**
 - Loading: Heat Flux = Load; Temperature = BC
 - Convection: in *Interaction* module, *create Surface Film condition*, enter h and $T^{\text{ext}} \Rightarrow q^{\text{surf}} = h (T - T^{\text{ext}}(t))$
 - **If transient: define an amplitude curve** (tool \Rightarrow amplitude), need to start at $T=0$ for $t=0$. Tabular or **smooth step** are good choices.

Coupled thermo-mechanics in Abaqus

- ▶ Select Step = **Coupled Temp-Displacement**
 - Choose **steady state or transient**
 - If transient: set time period, set small initial increment, set max ΔT per increment (<1/10 of max ΔT)
- ▶ In Mesh:
 - select **element type: Coupled Temp.-Displ.**, quadratic
- ▶ Loading:
 - If steady, need to **impose at least one temperature**. Must also **block 6 rigid body motions**.
 - **Adiabatic interface: leave free = no flux!**
 - Loading: Heat Flux = Load; Temperature = BC
 - Convection: in *Interaction* module, *create Surface Film condition*, enter h and $T^{\text{ext}} \Rightarrow q^{\text{surf}} = h (T - T^{\text{ext}}(t))$
 - **If transient: define an amplitude curve** (tool \Rightarrow amplitude), need to start at $T=0$ for $t=0$. Tabular or **smooth step** are good choices.

Transient simulation: time settings

Basic Incrementation Other

Description:

Response: Steady-state Transient

Time period: 500

Total physical time to be simulated.

Basic Incrementation Other

Type: Automatic Fixed

Maximum number of increments: 100

Increment size: Initial 1e-3 Minimum 1e-4 Maximum 10

Max. allowable temperature change per increment: 5

Automatic incrementation: Abaqus adjusts the size of the time step (time increment dt from one iteration at t to the next iteration at $t+dt$), based on how quickly the solution converges.

Maximum number of iterations. Simulation will stop if reach this number of iterations.

Initial increment size dt at $t=0$.

Minimum increment size dt . If at some point Abaqus needs a smaller time increment than this value to reach a convergent solution, it stops the analysis.

Maximum increment size dt . Abaqus will not increase the increment size beyond this value.

Abaqus will limit the increment size dt such that the temperature T does not vary by more than this value between t and $t+dt$ anywhere in the model (optional).

Transient simulation: time settings

Basic Incrementation Other

Description:

Response: Steady-state Transient

Time period: 500

Basic Incrementation Other

Type: Automatic Fixed

Maximum number of increments: 100

Initial	Minimum	Maximum
Increment size: 1e-3	1e-4	10

Max. allowable temperature change per increment: 5

In this example, the transient simulation:

- is from $t=0$ s to $t=500$ s,
- will start with $dt=0.001$ s,
- will then automatically adjust dt between 0.0001 s and 10 s (\rightarrow number of iterations falls necessarily between $500/10=50$ and $500/0.0001=5e6$),
- will also limit dt such that T varies by no more than 5 degrees between t and $t+dt$,
- will stop if it reaches 100 iterations.

Thermal problem in Abaqus

▶ Note #1: units of temperature

- By default, Abaqus uses K, but one can choose to work with °C. Unimportant if no radiation and no source term: solution of heat equation defined up to a uniform constant.
- However, everything must be defined consistently (boundary and initial conditions, etc).

▶ Note #2: absolute zero

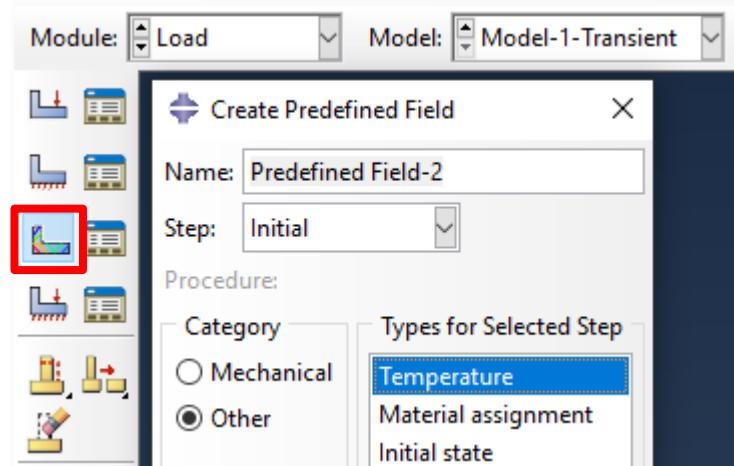
- Possible to define the value of the absolute zero temperature (Model → Edit attributes → Physical constants).
- E.g., setting -273.15 implicitly defines the units as °C, while setting 0 (default) implicitly defines the units as K.

Thermal problem in Abaqus

▶ Note #3: initial conditions

- By default, initial temperature in unsteady simulations: $T(t=0)=0$.
- Possible to define a non-zero initial condition $T(x)$:
 - In a **purely thermal** analysis, need a steady *heat transfer* step with the desired T as boundary condition before the unsteady *heat transfer* step.
 - In a **coupled thermo-mechanical** analysis (*coupled temperature-displacement* step), can create a “**Predefined field**” for the Initial step in the module “Load” (see for example exercise 10).

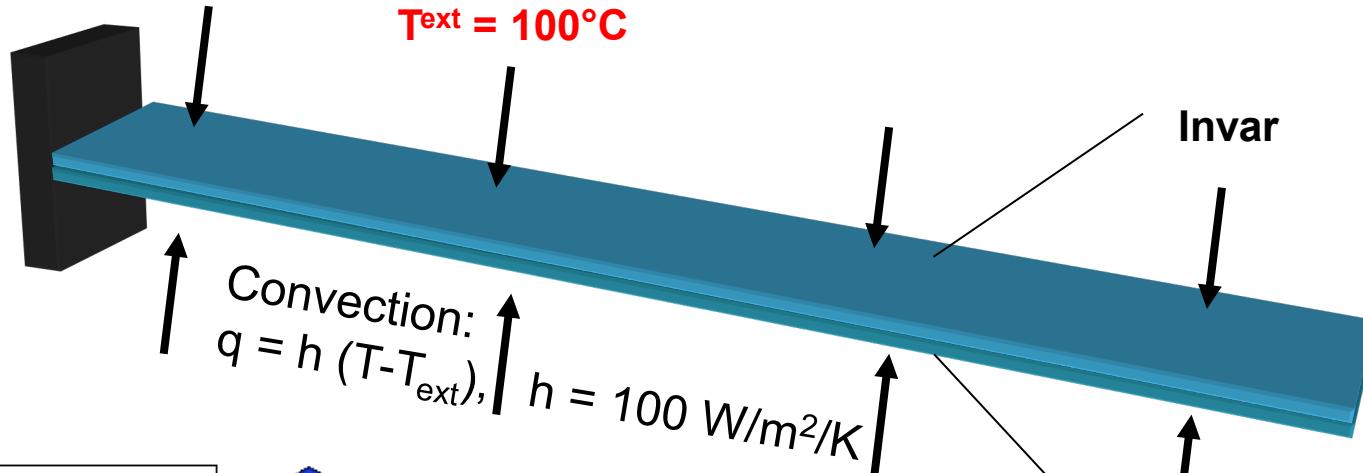
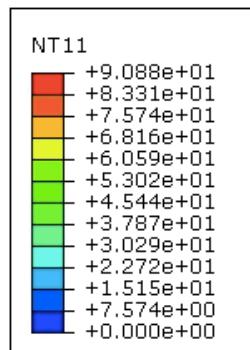
Name	Procedure
Initial	(Initial)
Step-Init	Heat transfer (Steady-State)
Step-1	Heat transfer (Transient)



Example: bi-material beam (thermal switch)

Block: clamped,
 $T = 0^\circ\text{C}$

Water:
 $T_{\text{ext}} = 100^\circ\text{C}$

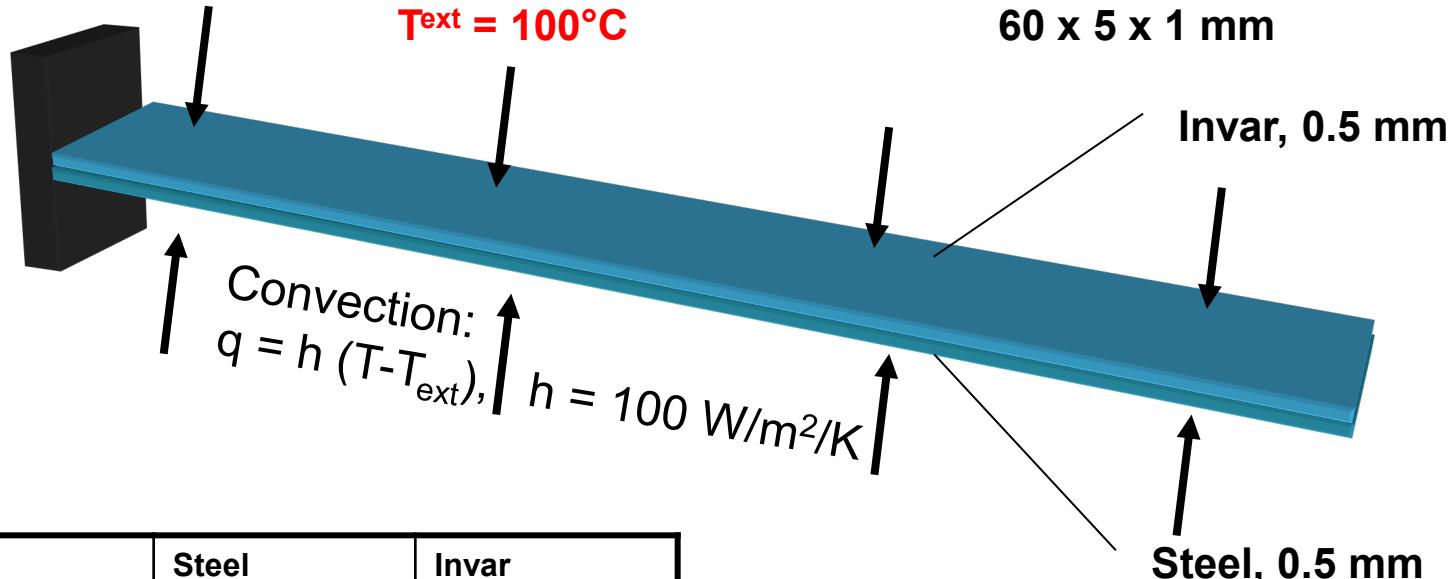


Example: bi-material beam (thermal switch)

Block: clamped,
 $T = 0^\circ\text{C}$

Water:
 $T_{\text{ext}} = 100^\circ\text{C}$

Beam dimensions:
 $60 \times 5 \times 1 \text{ mm}$



Prop.	Steel	Invar
Young's modulus	210 GPa	141 GPa
Poisson ratio	0.3	0.3
Th. Expansion	1×10^{-5}	1×10^{-6}
Density	7800 kg/m ³	8000 kg/m ³
Conductivity	30 W/m/K	10 W/m/K
Specific heat	1000 J/kg/K	500 J/kg/K

