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Problème modèle de la barre en traction/compression 
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Barreau prismatique encastré soumis à une charge 
répartie axiale et une force ponctuelle longitudinale
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Equilibre de la barre 
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N +  (dN/dx) dx – N +  q dx =  0

– dN/dx = q

N effort intérieur

q charge répartie

• Equation d’équilibre

q dx

N N + (dN/dx) dx

dx



Equilibre de la barre 
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• Equation constitutive (loi de Hooke)

sx =  E ex sx contrainte normale

E module d’élasticité

ex déformation axiale

• Linéarité de la déformation

ex =  du/dx u déplacement axial

N =  A sx =  EA ex =  EA (du/dx)

• Lien entre effort normal N et déplacement u

A section de la barre



Formulation forte du problème
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• Condition aux limites essentielle

u(0)  =  0

P force ponctuelle axialeEA (du/dx)x = l =  P

• Condition aux limites naturelle

• Equation différentielle du 2ème ordre

– EA (d2u/dx2)  =  q dans  ]0, l[ l longueur

u  C2([0, l]); q  L2(]0, l[) 

ponctuelle
q charge

!

L2(]0, l[)  =  {q(x) | q2 dx <  }
l

0
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charge ponctuelle en 
flexion des poutres!



Formulation intégrale du problème
2

1
/0

9
/2

0
2

3

-7-

• Forme intégrale de l’élastostatique du barreau

[EA (d2u/dx2)  +  q] du dx =  0    " du

du déplacement axial virtuel


l

0

• Intégration par parties

EA (du/dx) (ddu/dx) dx – [EA (du/dx) du]
l

0

l

0

=      q du dx " du
l

0

caractère
arbitraire de du!



Formulation intégrale du problème
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• Déplacement virtuel cinématiquement admissible

du(0)  =  0

• Insertion de la condition aux limites naturelle et de la 
contrepartie virtuelle de la condition aux limites essentielle

EA (du/dx) (ddu/dx) dx + EA (du/dx)       du(0)
l

0

=      q du dx " du
l

0

x=0

– EA (du/dx)       du(l)
x=l

EA (du/dx) (ddu/dx) dx – P du(l)
l

0
=     q du dx " du, t.q. du(0)=0

l

0

= P

= 0

du compatible avec la condition

aux limites essentielle!



Formulation faible du problème
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U =  {u(x) | u(x)  H1(]0, l[) ; u(0) = 0}

V =  {du(x) | du(x)  H1(]0, l[) ; du(0) = 0}


l

0
u  U :      EA (du/dx) (ddu/dx) dx

=  P du(l)  +     q du dx " du  V
l

0

• Forme faible de l’élastostatique du barreau : principe 
des travaux virtuels

H1(]0, l[)  =  {w(x) | <  }[ w2 + (dw/dx)2] dx
l
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• Classes des fonctions admissibles U et V

!



Définition des classes de fonctions
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• Régularité

| u |0  | u |1  | u |2 ...

• Norme maximale bornée

...  +  | dku/dxk | )

| u |k =          ( | u |  +  | du/dx |  +  | d2u/dx2 |  + 
lx0

max

• Classe des fonctions à dérivées continues d’ordre k

Ck([0, l])  =  {u(x), …, dku/dxk continues | | u |k <  }

...  C2  C1  C0 C 0
C1 C2



Définition des classes de fonctions
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• Régularité

|| u ||0  || u ||1  || u ||2 ...

• Classe des fonctions à dérivées de carrés sommables 

d’ordre k

Hk(]0, l[)  =  {u(x) | || u ||k <  }

(espace de Sobolev ou de Hilbert d’ordre k)


l

0






• Norme hilbertienne (norme euclidienne généralisée) bornée

...  +  (dku/dxk)2 ] dx

|| u ||k =        [ u2 +  (du/dx)2 +  (d2u/dx2)2 + 
2/1








...  H2  H1  H0
H 0

H1 H 2



Définition des classes de fonctions
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• Autre définition de la classe Hk(]0, l[) des fonctions à 

dérivées de carrés sommables d’ordre k

Hk(]0, l[)  =  {u(x) | u  L2(]0, l[);

du/dx  L2(]0, l[);

dku/dxk  L2(]0, l[)}

d2u/dx2  L2(]0, l[); ...;

• Classe des fonctions de carrés sommables

L2(]0, l[)  =  {u(x) | u2 dx <  }
l

0
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Comparaison des classes de fonctions
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• Inclusion des classes de fonctions

Ck  Hk (k  0)

• Cas particuliers

C1  H1 C0n = 1

C2  H2 C0n = 2

• Théorème d’injection de Sobolev (n dimension du problème)

Ck  Hk Ch (k – h > n/2 ; k, h  0)

H1  C0  C1
pm " n



Comparaison des classes de fonctions
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• Exemples en 1D H1 C0

u  C0

u  H1

u  C1

u  C0

u  H1

H1  C2!
faible  forte


