
Examen BLANC ME372 Méthode des éléments finis
25 novembre 2021

� Tous documents papier autorisés. Aucun engin électronique (durée 2h)

� Vous pouvez faire référence au cours ou à un exercice vu en cours et en tirer les expressions utiles.

EXERCICE 1: Ecoulement de Brinkman dans un canal (22 pts)

Figure 1: (a) Ecoulement dans un canal et (b)-(d) différentes discrétisations par éléments finis du segment [0; `]. Les noeuds
intérieurs d’éléments d’ordre strictement supérieur à 1 sont représentés par des cercles vides.

On cherche à calculer le champ de vitesse u(y) d’un écoulement dans un milieu poreux, dit de Brinkman, dans
un canal plan aux parois mobiles entre [−`; `]. La viscosité est notée µ, la vitesse des parois ±u0 et la perméabilité
k. L’équation pour la vitesse u en forme forte s’écrit
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u = 0 (1)

u(−`) = −u0;u(`) = u0 (2)

1. [1pt] On peut montrer que la solution à ce problème est impaire. Montrer que le problème devient pour
y ∈ [0; `]
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k
u = 0 (3)

u(0) = 0 (4)

u(`) = u0 (5)

2. [3 pts] Ecrire la forme faible associée (on notera v la vitesse virtuelle).

On donnera l’espace fonctionnel V adapté pour v, en le comparant à celui de u, u ∈ U,U = {u : u ∈
H1([0, `]), u(0) = 0, u(`) = u0}.

3. [2 pts] Pour que l’équivalence avec la forme forte soit obtenue, cette égalité doit-elle être vraie

(a) pour la solution u et la solution virtuelle v associée?

(b) pour la solution u et ∀v ∈ V ?

(c) pour toute solution ∀u ∈ U et ∀v ∈ V ?

4. [16 pts] On choisit k−1 = 10 m−2, µ = 1 Pa.s, ` = 1m et u0 = 1m.s−1. On discrétise l’intervalle [0, `] par un
unique élément quadratique. A quelle discrétisation de la figure 1 cela correspond-il? Mettre le système sous
la forme

Kq = 0 (6)

où K est matrice réduite 2 × 2 et q contient les valeurs nodales pertinentes. On fera attention à l’ordre des
noeuds. En prenant en compte la condition aux limite en y = `, calculez la solution. Comparez à la solution
analytique u(y) = sinh(y/

√
(k))sinh(`/

√
(k)), représentée sur la figure 2.
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Figure 2: Solution exacte pour k−1 = 10m−2, µ = 1Pa.s, ` = 1m, u0 = 1m/s.

EXERCICE 2: Température dans un disque soumis à un flux de chaleur
(22 pts )

On considère un disque de métal (de conductivité thermique constante κ ) de rayon R soumis à un flux de chaleur
uniforme et homogène q, comme indiqué sur la figure 3(a). La température T au sein du disque suit l’équation de
Poisson suivante, écrite sous forme faible

T ∈ C : κ

∫
Ω

(∇T )T∇δT dx dy =

∫
Ω

qδT dx dy ∀δT ∈ D (7)

D = C =
{
T | T ∈ H1(Ω);T = 0 sur ∂Ω

}
(8)

Les grandeurs x et y dénotent les variables spatiales dans le milieu bidimensionnel Ω et s est l’abscisse parcourant la
frontière du domaine ∂Ω, le symbole ∇ représentant l’opérateur de dérivation du premier ordre en deux dimensions
et δT symbolise la température virtuelle.

Figure 3: (a) Disque de rayon R soumis à un flux de chaleur q. (b) Discrétisation en 1 élément fini quadratique.

1. [2 pts] Déterminez la forme forte pour T . Quelle interprétation physique pourriez vous donner à la condition
aux limites obtenue en ∂Ω? Pourquoi le terme de bord résultant de l’intégration par partie de la forme forte
a t’il disparu de la forme faible?

2. [20 pts] Sur la base d’une discrétisation (approche globale) du disque en 1 élément fini carré biquadratique,
trouver l’approximation de la température au centre de la plaque circulaire. Il est conseillé de réfléchir aux

conditions aux limites avant de faire trop de calculs, et d’introduire la fonction h
(
9ξ, η) vue en cours ou dans

le livre. On donne aussi l’intégrale

∫ 1

−1

∫ 1

−1

4ξ2(1− η2)2dξdη =
8× 16

5× 9
. (9)
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