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Différences finies (15%)
. De maniere a établir le schéma aux différences finies souhaité, on écrit les deux séries de Taylor
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La somme de la premieére série multipliée par « et de la seconde multipliée par [ s’écrit
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Puis, en isolant la dérivée seconde, on obtient la relation
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avec A = 8 — a. Ceci conduit a I’approximation
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. La relation (4) montre que approximation (5) est du premier ordre en A et du second ordre en «
et 8. Dans la pratique, il convient de limiter autant que possible les gradients de taille de maillage.
L’erreur d’approximation est ainsi dominée par la taille des intervalles et non pas par la différence
entre deux intervalles adjacents.

. Dans le cas particulier ou les intervalles entre les noeuds sont égaux, on a A = 0 et on pose
a=pp=h. (6)
La relation générale (24) se réduit ainsi sous la forme
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dont on peut déduire le schéma classique des différences finies centrées du second ordre obtenu avec
des noeuds équidistants
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2 Equations aux dérivées partielles (15%)

On considere le systeme d’équations

3% 462 +3-— =0
o o0 e T
ov v
27 46— =0
* ot * ox ’
qui peut s’écrire la sous forme
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Les matrices des valeurs propres, des vecteurs propres ainsi que son inverse s’écrivent respectivement
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en sachant que les vecteurs propres sont définis & une constante multiplicative pres.
1. Le systeme est hyperbolique puisque
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2. Les caractéristiques sont obtenues en trouvant une primitive de la relation
A dt —dx = 0.
On trouve ainsi

¢ = 2t — x = const,

n = 3t — x = const.

3. Etant donné que les coefficients sont constants, les invariants de Riemann sont donnés par
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Laboratoires (20%)

. A la lecture du code, nous pouvons remarquer que les matrices de masse et de rigidité définies aux
lignes 22 et 32 représentent sous forme discrete les opérateurs
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intervenant dans 1’équation générale

Ou
M— + A(u) =0, (24)
ot
avec I'inconnue u = (u,v)T. En utilisant les relations (22) et (23), le systéme d’équations aux
dérivées partielles (24) s’écrit explicitement sous la forme
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En tenant compte du fait que le domaine est monodimensionel (ligne 18), et que la célérité est
constante (ligne 4), le systéme se réduit a '’équation de D’Alembert
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qui est donc I'équation résolue numériquement a l’exécution de ce code Matlab.

. Entre les lignes 39 et 43, les matrices de discrétisation sont modifiées de maniere a imposer des
conditions aux limites de Dirichlet homogenes, a gauche et a droite.

Des conditions initiales sont requises pour la variable u ainsi que pour sa dérivée temporelle étant
donné qu’une dérivée temporelle seconde intervient dans 1’équation de D’Alembert. Elles sont
définies a la ligne 46 sous forme d’une gaussienne pour u, et d’une fonction nulle pour la dérivée
temporelle.

. Le terme spatial est discrétisé au moyen d’un schéma aux différences finies décalé du second ordre.
Le gradient est en effet évalué sur des noeuds intercalés, puis 'opérateur qui représente la divergence
sous forme discrete réinterpole les grandeurs sur les noeuds de colocation. Etant donné que la
célérité est constante (ligne 4), ce schéma est strictement équivalent & un schéma aux différences
finies centré du second ordre.

La méthode d’intégration temporelle est basée sur la méthode-6 (lignes 35 et 36) avec le parametre
0 = 0.5. La méthode utilisée est donc celle de Crank—Nicolson.

. Les méthodes utilisées pour la discrétisation spatiale et temporelle sont convergentes et du second
ordre.

La combinaison d’un schéma aux différences finies centré du second ordre et de la méthode de
Crank—Nicolson n’introduit aucune diffusion ou anti-diffusion numérique. Les erreurs de discrétisation
agissent uniquement sur la dispersion, c’est-a-dire sur la vitesse de propagation des ondes.



Discrétisation spatiale (20%)

. En écrivant 1’équation d’advection-diffusion stationnaire sous forme intégrale et en utilisant les
fonctions test de la méthode des différences finies, on obtient
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En supposant que ¢ > 0, on utilise une approximation rétrograde du second ordre pour la dérivée
premiere ainsi qu'une approximation centrée du second ordre pour la dérivée seconde
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L’utilisation de ces schémas conduit au systeme d’équations linéaires écrit sous forme indicielle

i—1— 20 +u; i — W .
AR i

Ui—1 — 20 + Ui | 3wy — 4w Huo . 30
—v 2 +c o =0, 1=3,...,p—1, (30)

u; =0, u, =1

On peut remarquer que le schéma du second ordre ne peut pas étre utilisé au noeud d’indice 2
puisque son support sort du domaine de calcul. Un schéma amont du premier odre a donc été
utilisé pour ce noeud.

. Pour établir I’équation modifiée relative a ce schéma, on se sert des relations (28) et (29) que
Pon substitue dans le systeme d’équations (30). En ne considérant que les noeuds ou le schéma
rétrograde du second ordre peut étre utilisé, on obtient
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. De maniere a garantir la monotonicité de la solution numérique, les méthodes Upwind du premier
ordre ou de Sharfeter—Gummel introduisent directement une erreur sur la dérivée seconde, c’est-a-
dire de la diffusion artificielle.

Pour la méthode Upwind du second ordre, les erreurs numériques n’affectent pas directement les
termes de I’équation d’advection-diffusion. La monotonicité peut ainsi étre garantie tout en évitant
I’ajout de diffusion numérique.

. La méthode de Thomas n’est applicable que pour les matrices tridiagonales. En utilisant la méthode
Upwind du second ordre, la largeur de bande de la matrice de discrétisation est égale a 4. La
méthode de Thomas ne peut donc pas étre appliquée dans ce cas.



Relation de dispersion (10%)

. En partant de I’équation de Schrodinger

on choisit une solution de type onde sous la forme
1/J($7t) _ {/;ei(k:vfwt), (34)

avec {p\ Iamplitude, k le nombre d’onde et w la pulsation. On en déduit facilement que

88—1? = —iwr) ellkr—wt) (35)
2 —~ .

Par substitution des relations (35) et (36) dans ’équation de Schrodinger (33), on obtient

(hw — %1@ — V)i =0. (37)

Etant donné qu’on consideére des solutions d’amplitude 12 non-nulle, on obtient la relation de dis-
persion
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qui permet de déterminer la vitesse de phase
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. Etant donné que la vitesse de phase est purement réelle et qu’elle dépend du nombre d’onde,
I’équation de Schrodinger décrit la propagation d’ondes sans atténuation ou amplification et de
maniere dispersive.

La vitesse de phase des ondes décrites par ’équation d’advection est constante et égale a c, ce qui
correspond a une propagation sans atténuation ou amplification en milieu non-dispersif.



6 Equations de Navier—Stokes (20%)

Pour déterminer la précision du modele proposé, nous devons vérifier si 'opérateur et les conditions aux
limites sont appropriées a la situation physique. D’apres les hypotheses, ’écoulement peut étre décrit
par les équations de Navier—Stokes que nous écrivons sous forme adimensionnelle et indicielle
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e En prenant la divergence de 1’équation de conservation de la quantité de mouvement (40) et en
considérant que les forces volumiques g sont constantes, on obtient
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On obtient ainsi ’équation de Poisson
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qui correspond a celle proposée.

e [l s’agit maintenant de déterminer si les conditions aux limites de Neumann homogenes sont aussi
applicables. Etant donné que le domaine €2 est supposé tres grand par rapport a la longueur L, on
peut faire I’hypothese que le champ de vitesse ne soit pas perturbé sur les limites extérieures. En
projettant les équations de quantité de mouvement selon n, nous obtenons donc

Vp-n=g-n. (45)
Etant donné la présence de forces volumiques non-nulles, les conditions aux limites proposées ne
peuvent pas étre appliquées sur les limites extérieures du domaine.

Au niveau du profil, en tenant compte du fait que v = 0 & la paroi, la projection des équations de
quantité de mouvement selon n permet d’obtenir
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— . S v
V x(Vxv)=V(V-v)—- V-, (47)
=0

ou le premier terme du membre de droite est nul par le truchement de ’équation de conservation
de la masse, on obtient
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Comme le nombre de Reynolds vaut 10% et qu’on suppose 1’écoulement attaché (écoulement peu
rotationnel), on peut raisonnablement supposer que le premier terme du membre de droite soit nul.
On obtient ainsi les conditions aux limites a imposer sur le profil

Vp-n=g-n, (49)

qui sont les mémes que celles a imposer aux limites extérieures du domaine. Nous voyons que
la présence de forces volumiques non-nulles empéche 1'utilisation de conditions de Neumann ho-
mogenes.



Etant donné que les conditions aux limites ne sont pas applicables dans cette situation, la prédiction du
champ de pression obtenue avec le modele proposé n’est pas convenable.



