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1 Différences finies (15%)

1. De manière à établir le schéma aux différences finies souhaité, on écrit les deux séries de Taylor
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La somme de la première série multipliée par α et de la seconde multipliée par β s’écrit

αui+1 + βui−1 = (α+ β)ui +
αβ(α+ β)
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(3)

Puis, en isolant la dérivée seconde, on obtient la relation
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(4)

avec ∆ = β − α. Ceci conduit à l’approximation

∂2u

∂x2

∣∣∣∣
xi

' 2
αui+1 − (α+ β)ui + βui−1

αβ(α+ β)
. (5)

2. La relation (4) montre que l’approximation (5) est du premier ordre en ∆ et du second ordre en α
et β. Dans la pratique, il convient de limiter autant que possible les gradients de taille de maillage.
L’erreur d’approximation est ainsi dominée par la taille des intervalles et non pas par la différence
entre deux intervalles adjacents.

3. Dans le cas particulier où les intervalles entre les noeuds sont égaux, on a ∆ = 0 et on pose

α = β ≡ h. (6)

La relation générale (24) se réduit ainsi sous la forme
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dont on peut déduire le schéma classique des différences finies centrées du second ordre obtenu avec
des noeuds équidistants

∂2u
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xi

' ui+1 − 2ui + ui−1

h2
. (8)
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2 Equations aux dérivées partielles (15%)

On considère le système d’équations

+3
∂u

∂t
+ 6

∂u

∂x
+ 3

∂v

∂x
= 0, (9)

+2
∂v

∂t
+ 6

∂v

∂x
= 0, (10)

qui peut s’écrire la sous forme

Mt
∂u

∂t
+ Mx

∂u

∂x
= 0, (11)

avec u = (u, v)T ainsi que

Mt =

(
+3 0
0 +2

)
, (12)

Mx =

(
+6 +3
0 +6

)
. (13)

Ce système peut s’écrire la sous forme standard

∂u

∂t
+ A

∂u

∂x
= 0, (14)

avec

A = M−1
t Mx =

(
+2 +1
0 +3

)
. (15)

Les matrices des valeurs propres, des vecteurs propres ainsi que son inverse s’écrivent respectivement

Λ =

(
+2 0
0 +3

)
, V =

(
+1 +2−1/2

0 +2−1/2

)
, V−1 =

(
+1 −1
0 +2−1/2

)
, (16)

en sachant que les vecteurs propres sont définis à une constante multiplicative près.

1. Le système est hyperbolique puisque

λk =
dx

dt
=

5± 1

2
∈ R ∀k. (17)

2. Les caractéristiques sont obtenues en trouvant une primitive de la relation

λk dt− dx = 0. (18)

On trouve ainsi

ξ = 2t− x = const, (19)

η = 3t− x = const. (20)

3. Etant donné que les coefficients sont constants, les invariants de Riemann sont donnés par

r = V−1u =

(
+u− v
+2−1/2v

)
. (21)
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3 Laboratoires (20%)

1. A la lecture du code, nous pouvons remarquer que les matrices de masse et de rigidité définies aux
lignes 22 et 32 représentent sous forme discrète les opérateurs

M =

(
I 0
0 I

)
, (22)

A =

(
0 −I

−∇ · (c2∇) 0

)
, (23)

intervenant dans l’équation générale

M
∂u

∂t
+ A(u) = 0, (24)

avec l’inconnue u = (u, v)T. En utilisant les relations (22) et (23), le système d’équations aux
dérivées partielles (24) s’écrit explicitement sous la forme

∂u

∂t
− v = 0,

∂v

∂t
−∇ · (c2∇u) = 0.

(25)

En tenant compte du fait que le domaine est monodimensionel (ligne 18), et que la célérité est
constante (ligne 4), le système se réduit à l’équation de D’Alembert

∂2u

∂t2
− c2 ∂

2u

∂x2
= 0, (26)

qui est donc l’équation résolue numériquement à l’exécution de ce code Matlab.

2. Entre les lignes 39 et 43, les matrices de discrétisation sont modifiées de manière à imposer des
conditions aux limites de Dirichlet homogènes, à gauche et à droite.

Des conditions initiales sont requises pour la variable u ainsi que pour sa dérivée temporelle étant
donné qu’une dérivée temporelle seconde intervient dans l’équation de D’Alembert. Elles sont
définies à la ligne 46 sous forme d’une gaussienne pour u, et d’une fonction nulle pour la dérivée
temporelle.

3. Le terme spatial est discrétisé au moyen d’un schéma aux différences finies décalé du second ordre.
Le gradient est en effet évalué sur des noeuds intercalés, puis l’opérateur qui représente la divergence
sous forme discrète réinterpole les grandeurs sur les noeuds de colocation. Etant donné que la
célérité est constante (ligne 4), ce schéma est strictement équivalent à un schéma aux différences
finies centré du second ordre.

La méthode d’intégration temporelle est basée sur la méthode-θ (lignes 35 et 36) avec le paramètre
θ = 0.5. La méthode utilisée est donc celle de Crank–Nicolson.

4. Les méthodes utilisées pour la discrétisation spatiale et temporelle sont convergentes et du second
ordre.

La combinaison d’un schéma aux différences finies centré du second ordre et de la méthode de
Crank–Nicolson n’introduit aucune diffusion ou anti-diffusion numérique. Les erreurs de discrétisation
agissent uniquement sur la dispersion, c’est-à-dire sur la vitesse de propagation des ondes.
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4 Discrétisation spatiale (20%)

1. En écrivant l’équation d’advection-diffusion stationnaire sous forme intégrale et en utilisant les
fonctions test de la méthode des différences finies, on obtient

A(u)|xi = −ν ∂
2u

∂x2

∣∣∣∣
xi

+ c
∂u

∂x

∣∣∣∣
xi

= fi, i = 2, . . . ,p− 1,

u1 = 0, up = 1.

(27)

En supposant que c > 0, on utilise une approximation rétrograde du second ordre pour la dérivée
première ainsi qu’une approximation centrée du second ordre pour la dérivée seconde

∂u

∂x

∣∣∣∣
xi

=
3ui − 4ui−1 + ui−2

2h
+

2h2

3!

∂3u

∂x3

∣∣∣∣
xi

±O(h3), (28)

∂2u

∂x2

∣∣∣∣
xi

=
ui+1 − 2ui + ui−1

h2
− 2h2

4!

∂4u

∂x4

∣∣∣∣
xi

±O(h4). (29)

L’utilisation de ces schémas conduit au système d’équations linéaires écrit sous forme indicielle
−ν ui−1 − 2ui + ui+1

h2
+ c

ui − ui−1

h
= 0, i = 2

−ν ui−1 − 2ui + ui+1

h2
+ c

3ui − 4ui−1 + ui−2

2h
= 0, i = 3, . . . ,p− 1,

u1 = 0, up = 1.

(30)

On peut remarquer que le schéma du second ordre ne peut pas être utilisé au noeud d’indice 2
puisque son support sort du domaine de calcul. Un schéma amont du premier odre a donc été
utilisé pour ce noeud.

2. Pour établir l’équation modifiée relative à ce schéma, on se sert des relations (28) et (29) que
l’on substitue dans le système d’équations (30). En ne considérant que les noeuds où le schéma
rétrograde du second ordre peut être utilisé, on obtient(

−ν ∂
2u

∂x2
+ c

∂u

∂x

)
xi

+

(
−ν 2h2

4!

∂4u

∂x4
− c

2h2

3!

∂3u

∂x3

)
xi

±O(h3) = 0. (31)

A l’ordre dominant, il reste

A(uh) = A(u) + Eh(u) = −ν ∂
2u

∂x2
+ c

∂u

∂x︸ ︷︷ ︸
physique

−ν 2h2

4!

∂4u

∂x4
− c

2h2

3!

∂3u

∂x3︸ ︷︷ ︸
numérique

= 0. (32)

3. De manière à garantir la monotonicité de la solution numérique, les méthodes Upwind du premier
ordre ou de Sharfeter–Gummel introduisent directement une erreur sur la dérivée seconde, c’est-à-
dire de la diffusion artificielle.

Pour la méthode Upwind du second ordre, les erreurs numériques n’affectent pas directement les
termes de l’équation d’advection-diffusion. La monotonicité peut ainsi être garantie tout en évitant
l’ajout de diffusion numérique.

4. La méthode de Thomas n’est applicable que pour les matrices tridiagonales. En utilisant la méthode
Upwind du second ordre, la largeur de bande de la matrice de discrétisation est égale à 4. La
méthode de Thomas ne peut donc pas être appliquée dans ce cas.
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5 Relation de dispersion (10%)

1. En partant de l’équation de Schrödinger

i~
∂ψ

∂t
+

~
2µ

∂2ψ

∂x2
= V ψ, (33)

on choisit une solution de type onde sous la forme

ψ(x, t) = ψ̂ ei(kx−ωt), (34)

avec ψ̂ l’amplitude, k le nombre d’onde et ω la pulsation. On en déduit facilement que

∂ψ

∂t
= −iωψ̂ ei(kx−ωt), (35)

∂2ψ

∂x2
= (ik)2ψ̂ ei(kx−ωt). (36)

Par substitution des relations (35) et (36) dans l’équation de Schrödinger (33), on obtient

(~ω − ~
2µ

k2 − V )ψ̂ = 0. (37)

Etant donné qu’on considère des solutions d’amplitude ψ̂ non-nulle, on obtient la relation de dis-
persion

ω =
k2

2µ
+
V

~
, (38)

qui permet de déterminer la vitesse de phase

vφ =
ω

k
=

k

2µ
+
V

~k
. (39)

2. Etant donné que la vitesse de phase est purement réelle et qu’elle dépend du nombre d’onde,
l’équation de Schrödinger décrit la propagation d’ondes sans atténuation ou amplification et de
manière dispersive.

La vitesse de phase des ondes décrites par l’équation d’advection est constante et égale à c, ce qui
correspond à une propagation sans atténuation ou amplification en milieu non-dispersif.
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6 Equations de Navier–Stokes (20%)

Pour déterminer la précision du modèle proposé, nous devons vérifier si l’opérateur et les conditions aux
limites sont appropriées à la situation physique. D’après les hypothèses, l’écoulement peut être décrit
par les équations de Navier–Stokes que nous écrivons sous forme adimensionnelle et indicielle

∂vi
∂t

+ vk
∂vi
∂xk

= − ∂p

∂xi
+

1

Re

∂2vi
∂xk∂xk

+ gi, (40)

∂vi
∂xi

= 0. (41)

• En prenant la divergence de l’équation de conservation de la quantité de mouvement (40) et en
considérant que les forces volumiques g sont constantes, on obtient

− ∂2p

∂xi∂xi
− ∂

∂xi

(
vk
∂vi
∂xk

)
=

∂

∂t

∂vi
∂xi︸︷︷︸

∇·v=0

− 1

Re

∂2

∂xk∂xk

∂vi
∂xi︸︷︷︸

∇·v=0

= 0, (42)

où terme non-linéaire devient

∂2p

∂xi∂xi
= − ∂vk

∂xi

∂vi
∂xk︸ ︷︷ ︸

∇v:∇vT

−vk
∂

∂xk

∂vi
∂xi︸︷︷︸

∇·v=0

. (43)

On obtient ainsi l’équation de Poisson

∇2p = −∇v : ∇vT (44)

qui correspond à celle proposée.

• Il s’agit maintenant de déterminer si les conditions aux limites de Neumann homogènes sont aussi
applicables. Etant donné que le domaine Ω est supposé très grand par rapport à la longueur L, on
peut faire l’hypothèse que le champ de vitesse ne soit pas perturbé sur les limites extérieures. En
projettant les équations de quantité de mouvement selon n, nous obtenons donc

∇p · n = g · n. (45)

Etant donné la présence de forces volumiques non-nulles, les conditions aux limites proposées ne
peuvent pas être appliquées sur les limites extérieures du domaine.

Au niveau du profil, en tenant compte du fait que v = 0 à la paroi, la projection des équations de
quantité de mouvement selon n permet d’obtenir

∇p · n =

(
1

Re
∇2v + g

)
· n. (46)

Puis, en utilisant l’identité vectorielle

∇× (∇× v) = ∇(∇ · v︸ ︷︷ ︸
= 0

)−∇2v, (47)

où le premier terme du membre de droite est nul par le truchement de l’équation de conservation
de la masse, on obtient

∇p · n =

(
− 1

Re
∇× (∇× v) + g

)
· n. (48)

Comme le nombre de Reynolds vaut 106 et qu’on suppose l’écoulement attaché (écoulement peu
rotationnel), on peut raisonnablement supposer que le premier terme du membre de droite soit nul.
On obtient ainsi les conditions aux limites à imposer sur le profil

∇p · n = g · n, (49)

qui sont les mêmes que celles à imposer aux limites extérieures du domaine. Nous voyons que
la présence de forces volumiques non-nulles empêche l’utilisation de conditions de Neumann ho-
mogènes.
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Etant donné que les conditions aux limites ne sont pas applicables dans cette situation, la prédiction du
champ de pression obtenue avec le modèle proposé n’est pas convenable.
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