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Différences finies (15%)
. De maniere a établir le schéma aux différences finies souhaité, on écrit les deux séries de Taylor
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La différence de la premiére série multipliée par « et de la seconde multipliée par S s’écrit
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Puis, en isolant la dérivée premiere, on obtient la relation
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. La relation (4) montre que approximation (5) est du premier ordre en A et du second ordre en «
et 8. Dans la pratique, il convient donc de limiter les irrégularités pour que ’erreur soit dominée
par la taille du maillage.

. Dans le cas particulier ou les intervalles entre les noeuds sont égaux, on a A = 0 et on pose
a=p=h. (6)
La relation générale (4) se réduit ainsi sous la forme
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dont on peut déduire le schéma classique des différences finies centrées du second ordre obtenu avec
des noeuds équidistants
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2 Equations aux dérivées partielles (15%)

On considere le systeme d’équations
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qui peut s’écrire la sous forme standard
ou ou
— +A—=0 11
ot o D (1)
avec u = (u,v)" ainsi que
(2 +1
A= (2 1), a2
Les matrices des valeurs propres, des vecteurs propres ainsi que son inverse s’écrivent respectivement
(42 0 41 42712 (41 -1
A= < 0 43 )7 V= ( 0 +2—1/2 ) \% - 0 +2—1/2 ’ (13)
en sachant que les vecteurs propres sont définis a une constante multiplicative pres.
1. Le systeme est hyperbolique puisque
dr 5H=+1
A=—=——€R Vk. 14
T 2 (14)
2. Les caractéristiques sont obtenues en trouvant une primitive de la relation
A dt —dz = 0. (15)
On trouve ainsi
& =2t — x = const, (16)
n = 3t — x = const. (17)
3. Etant donné que les coefficients sont constants, les invariants de Riemann sont donnés par
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Laboratoires (25%)

. L’équation aux dérivées partielles résolue par le code Matlab est

ou 0%u
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5 Vo =0 v>0, (19)

avec des conditions aux limites de Dirichlet homogenes et les conditions initiales

2
ug = sin(kz), k= %, (20)

ou L est la longueur du domaine.

. Le terme de diffusion est discrétisé par un schéma aux différences finies centré du second ordre.
L’intégration temporelle est effectuée au moyen de la méthode d’Euler explicite.

. Les solutions d’équilibre de I’équation (19) sont stables au niveau continu. Etant donné qu’on
utilise une approche centrée pour la discrétisation spatiale, le caractere des solutions d’équilibre au
niveau semi-discret demeure inchangé.

. Etant donné qu’on utilise la méthode d’Euler explicite en temps et un schéma aux différences finies
centré du second ordre en espace, la stabilité est conservée au niveau discret pour autant que le
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soit respecté. Si le pas de temps est plus grand que cette valeur, les solutions d’équilibre sont
instables au niveau discret.

. Etant donné que le critere (21) n’est pas respecté, la solution de I’équation de diffusion sera polluée
par des instabilités numériques. L’équation de diffusion (19) étant linéaire, il ne peut pas y avoir de
phénomene de saturation. La croissance exponentielle des instabilités s’effectue donc indéfiniment
dans le temps. On obtient ainsi une solution polluée par des oscillations d’amplitude extrémement
élevée et on dira que la solution numérique “explose”.



4 Analyses de stabilité (20%)

Pour déterminer le caractere des solutions d’équilibre au niveau continu, on calcule 'opérateur spatial
linéarisé
0A
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w

Dans ce cas particulier, il est égal a l'opérateur spatial puisque ce dernier est linéaire. L’équation
d’évolution de la perturbation s’écrit donc

o' +v 0% u' = 0. (23)
Avec une solution de la forme v (z,t) = @ ¢/*®=%Y)on obtient la relation de dispersion
w = +ivk?. (24)

Etant donné que
Im(w) >0, Vk, (25)

les solutions d’équilibre sont instables au niveau continu, c’est-a-dire que toute perturbation est expo-
nentiellement amplifiée en temps.

1. En écrivant 1’équation sous forme intégrale et en utilisant les fonctions test de la méthode des
différences finies, on obtient
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puisqu’on considere des conditions aux limites périodiques. Ensuite, I'utilisation d’une approxima-
tion centrée du second ordre pour le terme spatial conduit aux équations semi-discretes
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Ceci peut aussi s’écrire sous la forme matricielle standard

Mu + Au = Mf, (28)
avec la matrice de masse M = I (méthode de colocation). La matrice de discrétisation est donnée
par

-2 +1 +1
y . . .
A= +ﬁ +1 -2 +1 . (29)
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2. Pour déterminer le caractere des solutions d’équilibre au niveau semi-discret, on doit résoudre le
probléme aux valeurs propres généralisé

AEMa® + La® = o. (30)

Etant donné que la matrice de masse est identité et que L = A par linéarité de ’équation, il se
réduit & un probleme aux valeurs propres standard

Aa® = \Bgk), (31)
La matrice A étant circulaire et tridiagonale, on trouve facilement que

AR — +2—I; (1 —cos(yx)) > 0. (32)

L’instabilité des solutions d’équilibre est donc conservée au niveau semi-discret quel que soit le pas
de discrétisation. Cette méthode de discétisation spatiale est donc absoluement consistante.



3. En utilisant la méthode-theta pour la discrétisation temporelle de ’équation (28), on montre facile-
ment qu’on obtient le systeme d’équations algébriques

Ha"*Y = Ra™ + (1 — 0)Mf™ 4 oMFO+D) (33)

ou les matrices H et R sont données par

M

H=-——+0A 4
A oA (34)
M

R= 1 +(0-DA. (35)

Dans le cas de la méthode d’Euler implicite, on pose 6 = 1.

4. Pour examiner le caractere des solutions d’équilibre au niveau discret, on doit résoudre le probleme

aux valeurs propres généralisé
yOHa® = Ra®, (36)

ou les matrices H et R sont cette fois-ci données par

M
H =+ +0L, (37)
M
= — —1)L.
R= 1 +(0-1) (38)

Avec la méthode d’Euler implicite (6 = 1) et puisque la matrice de masse est identité, le probleme
aux valeurs propres généralisé (36) se simplifie sous la forme

FEI+ AtA)a® = a® (39)
étant donné que L = A. On trouve ainsi que

(501 = 2’;% (cos(hy) — 1) + 1. (40)

Pour conserver I'instabilité des solutions d’équilibre, on doit imposer
7W] > 1, (41)

ou de maniere équivalente |(3¥))~1| < 1, ce qui implique la restriction

h2
At < % (42)

de maniere a obtenir une discrétisation consistante.



5 Linéarisation et opérateur adjoint (10%)

5.1 Linéarisation

Premiére méthode. L’équation de Burgers peut s’écrire sous la forme générale

Ou+ A(u) = f, (43)
ou l'opérateur spatial est défini par
0%u Ju

De maniére a établir la forme linéarisée de cette équation autour de la solution d’équilibre @, on effectue
la décomposition
— /
= 1. 45
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Par un développement limité au premier ordre, on obtient

(e') = f. (46)
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Etant donné que I’équilibre @ est solution de I’équation de départ, I’évolution de la perturbation est
gouvernée par 1’équation linéarisée
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L’opérateur spatial linéarisé autour de 1’équilibre @ appliqué & u’ s’écrit donc
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ce qui permet d’aboutir a I’équation de Burgers linéarisée

o’ 0% ou ou
o Vo Ty T, =0 (49)

Seconde méthode. En remplacant directement la solution d’équilibre perturbée (45) dans I’équation
de Burgers, on obtient
0w+ eu) 0% (u + eu) 0w+ eu)
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En tenant compte du fait que 1’équilibre est solution de I’équation, en négligeant les termes d’ordre €2,
et par linéarité des opérations de dérivation, ’équation précédente se simplifie sous la forme
o’ %! o’ ,0u

ot Vo ot =0 (50)
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qui est strictement équivalente a ’équation (49).

5.2 Opérateur adjoint

L’opérateur spatial linéarisé peut s’écrire sous la forme

0% A

Lw,v) = —v 51
(w,u) 92 o (51)
La décomposition en parties symétrique et anti-symétrique s’écrit formellement

L(u,u') = Ls(u,v') + La(u,u'), (52)



avec les définitions suivantes

(LS(ﬂv u'),v) = +(u/a LS(ﬂvv)v (53)
(La(m,u'),v) = —(u', La(u,v)), (54)

ou v est la fonction test. En ne considérant pas les termes de bord issus des intégrations par parties, la
formulation intégrale de la relation (52) devient
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ou le premier terme a été intégré deux fois par parties et le second une fois. Par identification des termes
avec les équations (53) et (54), nous déduisons que

2,/
Ls(@,u) = 71/2;‘2 : (56)
— !
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L’opérateur adjoint s’écrit donc
2,/ !
Lo(m) = Ls(a.u) - La(mu) = -2 % — 200, (58)
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6 Equations de Navier—Stokes (15%)

Pour déterminer la précision du modele proposé, nous devons vérifier si 'opérateur et les conditions aux
limites sont appropriées a la situation physique. D’apres les hypotheses, ’écoulement peut étre décrit
par les équations de Navier—Stokes que nous écrivons sous forme adimensionnelle et indicielle
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e En prenant la divergence de 1’équation de conservation de la quantité de mouvement (59) et en
considérant que les forces volumiques g sont nulles, on obtient
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ou terme non-linéaire devient
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On obtient ainsi I’équation de Poisson
Vp=-Vu: Vol (63)

qui correspond a celle proposée.

e Etant donné que le domaine €2 est supposé tres grand par rapport a la longueur L, on peut faire
I’hypothese que le champ de pression ne soit pas perturbé sur les limites extérieures. Les conditions
aux limites de Dirichlet et de Neumann homogenes sont donc appropriées.

Il s’agit maintenant de déterminer si les conditions aux limites de Neumann homogenes sont aussi
applicables sur le profil. On cherche donc une expression du gradient de pression selon la normale
a la paroi. En projectant les équations de quantité de mouvement selon n, en tenant compte du
fait que v = 0 a la paroi et que g = 0, on obtient

1
Vp-n= (RGVZU) -n. (64)
Puis, en utilisant I'identité vectorielle
V x (V xv)=V(V- v) -V, (65)

=0

ol le premier terme du membre de droite est nul par le truchement de 1’équation de conservation
de la masse, on obtient

Vpon— (Pier(va)> ‘. (66)

Comme le nombre de Reynolds vaut 10% et qu’on suppose 1’écoulement attaché (écoulement peu
rotationel), on peut raisonablement supposer que le membre de droite de I’équation (66) soit nul.
Les conditions aux limites de Neumann homogenes sont donc aussi applicables sur le profil.

Etant donné que l'opérateur et les conditions aux limites proposées sont conformes aux hypotheses, la
prédiction du champ de pression obtenue avec ce modele est convenable.



