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1 Différences finies (10%)

On considère le schéma aux différences finies suivant

∂nu

∂xn

∣∣∣∣
xi

=
+3ui − 4ui−1 + ui−2

2h
±O(hm). (1)

Etant donné que trois points apparaissent dans ce schéma, on écrit les trois séries de Taylor

ui−2 = ui − 2h
∂u

∂x

∣∣∣∣
xi

+
(2h)2

2!

∂2u

∂x2

∣∣∣∣
xi

±O(h3), (2)

ui−1 = ui − h
∂u

∂x

∣∣∣∣
xi

+
h2

2!

∂2u

∂x2

∣∣∣∣
xi

±O(h3), (3)

ui = ui. (4)

En multipliant l’équation (3) par un facteur 4 et en lui soustrayant l’équation (55), on obtient la relation

4ui−1 − ui−2 = 3ui − 2h
∂u

∂x

∣∣∣∣
xi

±O(h3) (5)

dont on peut isoler la dérivée première pour obtenir

∂u

∂x

∣∣∣∣
xi

=
+3ui − 4ui−1 + ui−2

2h
±O(h2). (6)

Le schéma de l’équation (1) approxime donc la dérivée première au second ordre.
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2 Equations aux dérivées partielles (15%)

On considère le système d’équations

+
∂u

∂t
+
∂u

∂x
+
∂v

∂x
= 0, (7)

+
∂v

∂t
− ∂u

∂x
+
∂v

∂x
= 0, (8)

qui peut s’écrire la sous forme standard

∂u

∂t
+ A

∂u

∂x
= 0, (9)

avec u = (u, v)T ainsi que

A =

(
+1 +1
−1 +1

)
. (10)

Les matrices des valeurs propres, des vecteurs propres ainsi que son inverse s’écrivent respectivement

Λ =

(
1 + i 0

0 1− i

)
, V =

1

2

(
+1 +1
+i −i

)
, V−1 =

(
+1 −i
+1 +i

)
, (11)

en sachant que les vecteurs propres sont définis à une constante multiplicative près. Le système est
elliptique puisque

λk =
dx

dt
= 1± i ∈ C ∀k. (12)

Les caractéristiques sont obtenues en trouvant une primitive de la relation

λk dt− dx = 0. (13)

On trouve ainsi

ξ = (1 + i)t− x = const, (14)

η = (1− i)t− x = const. (15)

Etant donné que les coefficients sont constants, les invariants de Riemann sont donnés par

r = V−1u =

(
u+ iv
u− iv

)
. (16)
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3 Laboratoires (25%)

1. L’équation aux dérivées partielles résolue par le code Matlab est

∂u

∂t
+ c

∂u

∂x
= 0, (17)

avec des conditions aux limites périodiques et les conditions initiales

u0 = sin(kx), k =
2π

L
, (18)

où L est la périodicité du domaine.

2. Le terme d’advection est discrétisé par un schéma aux différences finies rétrograde du premier
ordre. Comme c > 0, on a un schéma amont ou Upwind.

La méthode d’intégration temporelle est la méthode-theta. Etant donné que le paramètre θ = 0,
cette méthode se ramène ici au cas particulier de la méthode d’Euler explicite.

3. Etant donné que le schéma aux différences finies amont du premier ordre introduit une diffusion
numérique sur une équation d’advection pure, les solutions d’équilibre au niveau semi-discret sont
stables.

4. Comme on a utilisé un schéma amont du premier ordre en espace, la méthode d’Euler explicite en
temps et que le nombre de Courant

Co =
c∆t

h
= 1, (19)

les solutions d’équilibre au niveau discret sont neutres.

5. Ces méthodes de discrétisation avec ce jeu de paramètres permettent de résoudre l’équation d’advection
à la précision machine. Elles sont donc parfaitement appropriées à la résolution de ce problème.
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4 Analyses de stabilité (20%)

Pour déterminer le caractère des solutions d’équilibre au niveau continu, on calcule l’opérateur spatial
linéarisé

L(u, u′) =
∂A

∂u

∣∣∣∣
u

(u′) = c ∂xu
′. (20)

Dans ce cas particulier, il est égal à l’opérateur spatial puisque ce dernier est linéaire. L’équation
d’évolution de la perturbation s’écrit donc

∂tu
′ + c ∂xu

′ = 0. (21)

Avec une solution de la forme u′(x, t) = û ei(kx−ωt), on obtient la relation de dispersion classique

ω = ck. (22)

Etant donné que
Im(ω) = 0, ∀k, (23)

les solutions d’équilibre sont neutres au niveau continu, c’est-à-dire que toute perturbation n’est ni
amplifiée, ni atténuée. Dans ce cas, elle est seulement advectée.

1. En écrivant l’équation d’advection instationnaire sous forme intégrale et en utilisant les fonctions
test de la méthode des différences finies, on obtient

∂u

∂t

∣∣∣∣
xi

+ c
∂u

∂x

∣∣∣∣
xi

= fi, ∀i, (24)

puisqu’on considère des conditions aux limites périodiques. Ensuite, l’utilisation d’une approxima-
tion progressive du premier ordre pour le terme d’advection conduit aux équations semi-discrètes

u̇i + c
ui+1 − ui

h
= fi, ∀i. (25)

Ceci peut aussi s’écrire sous la forme matricielle standard

Mu̇ + Au = Mf , (26)

avec la matrice de masse M = I (méthode de colocation). La matrice de discrétisation est donnée
par

A =
c

h


−1 +1

. .
−1 +1

. .
+1 −1

 . (27)

2. Pour déterminer le caractère des solutions d’équilibre au niveau semi-discret, on doit résoudre le
problème aux valeurs propres généralisé

λ̃(k)Mû(k) + Lû(k) = 0. (28)

Etant donné que la matrice de masse est identité et que L = A par linéarité de l’équation
d’advection, il se réduit à un problème aux valeurs propres standard

Aû(k) = −λ̃(k)û(k). (29)

La matrice A étant circulaire et tridiagonale, on trouve facilement que

λ̃(k) = − c

h
(cos(ψk)− 1 + i sin(ψk)) → Re(λ̃(k)) ≥ 0. (30)

La neutralité des solutions d’équilibre n’est donc pas conservée au niveau semi-discret. Elles ont
été rendues instable par l’anti-diffusion numérique engendrée par le décentrement du schéma vers
l’aval. Cette méthode de discétisation spatiale est donc inconsistante dans ce contexte.
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3. En utilisant la méthode-theta pour la discrétisation temporelle de l’équation (26), on montre facile-
ment qu’on obtient le système d’équations algébriques

Hũ(n+1) = Rũ(n) + (1− θ)Mf (n) + θMf (n+1), (31)

où les matrices H et R sont données par

H =
M

∆t
+ θA, (32)

R =
M

∆t
+ (θ − 1)A. (33)

Dans le cas de la méthode d’Euler implicite, on pose θ = 1.

4. Pour examiner le caractère des solutions d’équilibre au niveau discret, on doit résoudre le problème
aux valeurs propres généralisé

γ̃(k)Hû(k) = Rû(k), (34)

où les matrices H et R sont cette fois-ci données par

H =
M

∆t
+ θL, (35)

R =
M

∆t
+ (θ − 1)L. (36)

Avec la méthode d’Euler implicite (θ = 1) et puisque la matrice de masse est identité, le problème
aux valeurs propres généralisé (34) se simplifie sous la forme

γ̃(k)(I + ∆tA)û(k) = û(k) (37)

étant donné que L = A. On trouve ainsi que

(γ̃(k))−1 = Co (cos(ψk)− 1 + i sin(ψk))− 1, (38)

avec le nombre de Courant

Co =
c∆t

h
. (39)

Pour conserver la neutralité du problème continu, on doit imposer

|γ̃(k)| = 1, (40)

ce qui implique la restriction

Co = 1 (41)

de manière à obtenir une discrétisation consistante.
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5 Linéarisation (10%)

Première méthode. L’équation de Korteweg–de Vries peut s’écrire sous la forme générale

∂tu+A(u) = f, (42)

où l’opérateur spatial est défini par

A(u) =
∂3u

∂x3
+ α

∂u2

∂x
. (43)

De manière à établir la forme linéarisée de cette équation autour de la solution d’équilibre u, on effectue
la décomposition

u = u︸︷︷︸
équilibre

+ εu′︸︷︷︸
perturbation

, ε� 1. (44)

Par un développement limité au premier ordre, on obtient

∂tu+ ∂t(εu
′) +A(u) +

∂A

∂u

∣∣∣∣
u

(εu′) = f. (45)

Etant donné que l’équilibre u est solution de l’équation de départ, l’évolution de la perturbation est
gouvernée par l’équation linéarisée

∂tu
′ +

∂A

∂u

∣∣∣∣
u

(u′)︸ ︷︷ ︸
= L(u,u′)

= 0. (46)

L’opérateur spatial linéarisé autour de l’équilibre u appliqué à u′ s’écrit donc

L(u, u′) =
∂3u′

∂x3
+ 2α

∂(uu′)

∂x
, (47)

ce qui permet d’aboutir à l’équation de Korteweg–de Vries linéarisée

∂u′

∂t
+
∂3u′

∂x3
+ 2α

∂(uu′)

∂x
= 0. (48)

Seconde méthode. En remplaçant directement la solution d’équilibre perturbée (44) dans l’équation
de Korteweg–de Vries, on obtient

∂(u+ εu′)

∂t
+
∂3(u+ εu′)

∂x3
+ α

∂(u+ εu′)2

∂x
= f.

En tenant compte du fait que l’équilibre est solution de l’équation, en négligeant les termes d’ordre ε2,
et par linéarité des opérations de dérivation, l’équation précédente se simplifie sous la forme

∂u′

∂t
+
∂3u′

∂x3
+ 2α

∂(uu′)

∂x
= 0, (49)

qui est strictement équivalente à l’équation (48).
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6 Différences finies compactes (20%)

1. En posant α = 0, l’approximation aux différences finies compactes se réduit à

u
(1)
i ' β

2h
(u

(0)
i+1 − u

(0)
i−1). (50)

De manière à déterminer l’ordre de cette approximation, on développe chacun des termes du mem-
bre de droite en série de Taylor

u
(0)
i±1 = +u

(0)
i ± hu

(1)
i +

h2

2!
u

(2)
i ±

h3

3!
u

(3)
i +

h4

4!
u

(4)
i ±

h5

5!
u

(5)
i ±O(h6), (51)

série qui est interrompue au cinquième ordre puisque u ∈ C5(R). Par substitution dans la relation
(50), on trouve l’erreur d’approximation

τ = u
(1)
i − β

(
u

(1)
i +

h2

3!
u

(3)
i +

h4

5!
u

(5)
i

)
±O(h6). (52)

Pour que l’approximation soit du second ordre, il faut annuler les termes d’ordre zéro. On a donc

β = 1, (53)

et on retrouve ainsi l’approximation classique aux différences finies centrée du second ordre

u
(1)
i =

u
(0)
i+1 − u

(0)
i−1

2h
±O(h2). (54)

2. Pour déterminer l’erreur d’approximation dans le cas général, on développe les dérivées premières
en série de Taylor

u
(1)
i±1 = +u

(1)
i ± hu

(2)
i +

h2

2!
u

(3)
i ±

h3

3!
u

(4)
i +

h4

4!
u

(5)
i ±O(h5). (55)

Par substitution des relations (51) et (55) dans l’approximation aux différences finies compactes,
on trouve

τ = (2α+ 1)u
(1)
i + αh2u

(3)
i +

αh4

12
u

(5)
i − β

(
u

(1)
i +

h2

3!
u

(3)
i +

h4

5!
u

(5)
i

)
±O(h6). (56)

3. Pour que l’approximation soit du quatrième ordre, il faut annuler les termes d’ordre zéro et d’ordre
deux. On obtient ainsi le système d’équations

2α− β = −1, (57)

3!α− β = 0, (58)

dont la solution est donnée par

(α, β) =

(
1

4
,

3

2

)
. (59)

On obtient ainsi l’approximation aux différences finies compactes du quatrième ordre

1

4
(u

(1)
i+1 + 4u

(1)
i + u

(1)
i−1) =

3

4h
(u

(0)
i+1 − u

(0)
i−1)±O(h4). (60)

4. L’avantage de ce schéma est qu’on obtient une approximation du quatrième ordre avec un support
de trois points. Il faudrait un support de cinq points pour obtenir le même ordre avec une approche
classique.

Le désavantage est que les dérivées nodales ne peuvent pas être obtenues de manière explicite. Il
faut donc établir et résoudre un système d’équations linéaires pour les déterminer.
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