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1 Différences finies (10%)

On considére le schéma aux différences finies suivant
0"
ox™
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Etant donné que trois points apparaissent dans ce schéma, on écrit les trois séries de Taylor
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En multipliant ’équation (3) par un facteur 4 et en lui soustrayant I’équation (55), on obtient la relation
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dont on peut isoler la dérivée premiere pour obtenir
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Le schéma de I’équation (1) approxime donc la dérivée premiere au second ordre.



2 Equations aux dérivées partielles (15%)

On considere le systeme d’équations
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qui peut s’écrire la sous forme standard
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avec u = (u,v)" ainsi que
(41 +
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Les matrices des valeurs propres, des vecteurs propres ainsi que son inverse s’écrivent respectivement
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en sachant que les vecteurs propres sont définis a une constante multiplicative pres. Le systeme est
elliptique puisque
_dw

Me=-g =1£i€C Vk (12)

Les caractéristiques sont obtenues en trouvant une primitive de la relation

A dt — dz = 0. (13)

On trouve ainsi
&= (1+1)t —z = const, (14)
n=(1—1i)t — x = const. (15)

Etant donné que les coefficients sont constants, les invariants de Riemann sont donnés par

r:Vlu:<u+iU>‘ (16)
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Laboratoires (25%)

. L’équation aux dérivées partielles résolue par le code Matlab est

ou ou

avec des conditions aux limites périodiques et les conditions initiales

2
ug = sin(kx), k= %, (18)
ou L est la périodicité du domaine.

. Le terme d’advection est discrétisé par un schéma aux différences finies rétrograde du premier
ordre. Comme ¢ > 0, on a un schéma amont ou Upwind.

La méthode d’intégration temporelle est la méthode-theta. Etant donné que le parametre 6 = 0,
cette méthode se ramene ici au cas particulier de la méthode d’Euler explicite.

. Etant donné que le schéma aux différences finies amont du premier ordre introduit une diffusion
numérique sur une équation d’advection pure, les solutions d’équilibre au niveau semi-discret sont
stables.

. Comme on a utilisé un schéma amont du premier ordre en espace, la méthode d’Euler explicite en

temps et que le nombre de Courant

cAt

— =1,
h

les solutions d’équilibre au niveau discret sont neutres.

Co = (19)

. Ces méthodes de discrétisation avec ce jeu de parametres permettent de résoudre I’équation d’advection
a la précision machine. Elles sont donc parfaitement appropriées a la résolution de ce probleme.



4 Analyses de stabilité (20%)

Pour déterminer le caractere des solutions d’équilibre au niveau continu, on calcule 'opérateur spatial
linéarisé

0A
ou
Dans ce cas particulier, il est égal a l'opérateur spatial puisque ce dernier est linéaire. L’équation
d’évolution de la perturbation s’écrit donc

L(u,u') = (u') =cou'. (20)

u

O’ + ¢ O,u’ = 0. (21)
Avec une solution de la forme v (z,t) = @t ¢/®®=“Y) on obtient la relation de dispersion classique
w = ck. (22)
Etant donné que
Im(w) =0, Vk, (23)

les solutions d’équilibre sont neutres au niveau continu, c’est-a-dire que toute perturbation n’est ni
amplifiée, ni atténuée. Dans ce cas, elle est seulement advectée.

1. En écrivant ’équation d’advection instationnaire sous forme intégrale et en utilisant les fonctions
test de la méthode des différences finies, on obtient

o, o
ot

O = fia VZ, (24)
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puisqu’on considere des conditions aux limites périodiques. Ensuite, I'utilisation d’une approxima-
tion progressive du premier ordre pour le terme d’advection conduit aux équations semi-discretes

i + c% =f, Vi (25)
Ceci peut aussi s’écrire sous la forme matricielle standard
Mu + Au = Mf, (26)
avec la matrice de masse M = I (méthode de colocation). La matrice de discrétisation est donnée
par
-1 +1
. .
A=— -1 +1 . (27)
h
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2. Pour déterminer le caractere des solutions d’équilibre au niveau semi-discret, on doit résoudre le
probléme aux valeurs propres généralisé

AOMa® + Lak® = o. (28)

Etant donné que la matrice de masse est identité et que L = A par linéarité de 1’équation
d’advection, il se réduit a un probléme aux valeurs propres standard

Aa® = _\RB gk, (29)
La matrice A étant circulaire et tridiagonale, on trouve facilement que

AW = —=(cos(ve) = 1 +isin()) = Re(A®) >0, (30)

La neutralité des solutions d’équilibre n’est donc pas conservée au niveau semi-discret. Elles ont
été rendues instable par 'anti-diffusion numérique engendrée par le décentrement du schéma vers
I'aval. Cette méthode de discétisation spatiale est donc inconsistante dans ce contexte.



3. En utilisant la méthode-theta pour la discrétisation temporelle de ’équation (26), on montre facile-
ment qu’on obtient le systeme d’équations algébriques

Ha"*Y = Ra™ + (1 — 0)Mf™ 4 oMFO+D) (31)

ou les matrices H et R sont données par

M

H=——+0A 2
A oA (32)
M

R= 1 +(0-DA. (33)

Dans le cas de la méthode d’Euler implicite, on pose 6 = 1.

4. Pour examiner le caractere des solutions d’équilibre au niveau discret, on doit résoudre le probleme

aux valeurs propres généralisé
yOHa® = Ra®, (34)

ou les matrices H et R sont cette fois-ci données par

M
H=  +0L, (35)
M
= — —1)L.
R= 1 +(0-1) (36)

Avec la méthode d’Euler implicite (6 = 1) et puisque la matrice de masse est identité, le probleme
aux valeurs propres généralisé (34) se simplifie sous la forme

FEI+ AtA)a® = a® (37)

étant donné que L = A. On trouve ainsi que

(3") 7" = Co (cos(vhy) — 1 +isin(yy)) — 1, (38)
avec le nombre de Courant At
¢
Co=—-. 39
0= (39)
Pour conserver la neutralité du probleme continu, on doit imposer
A =1, (40)
ce qui implique la restriction
Co=1 (41)

de maniere a obtenir une discrétisation consistante.



5 Linéarisation (10%)

Premiére méthode. L’équation de Korteweg—de Vries peut s’écrire sous la forme générale

dru+ Alu) = . (12)
ou l'opérateur spatial est défini par
u ou?

De maniere a établir la forme linéarisée de cette équation autour de la solution d’équilibre @, on effectue
la décomposition
u= _u, 6 + e , e<l (44)
~— ~—

équilibre  perturbation

Par un développement limité au premier ordre, on obtient

Ou+ O (eu') + A(u) + g% (eu') = f. (45)

u

Etant donné que I’équilibre @ est solution de I’équation de départ, I’évolution de la perturbation est
gouvernée par 1’équation linéarisée

A
8tu/ + % 7(’[1,/) = O (46)
= L(u,u’)

L’opérateur spatial linéarisé autour de I’équilibre u appliqué a v’ s’écrit donc
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— AN
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ce qui permet d’aboutir a I’équation de Korteweg—de Vries linéarisée
o' O d(uu')
- - 2 =0. 48
ot "o T e (48)

Seconde méthode. En remplacant directement la solution d’équilibre perturbée (44) dans I’équation
de Korteweg—de Vries, on obtient
o(u + ! 63 7 / o(u /\2
( eu)+ (u—l—eu)+a (T + eu’)
ot Ox3 Oz

= f.

En tenant compte du fait que 1’équilibre est solution de I’équation, en négligeant les termes d’ordre €2,
et par linéarité des opérations de dérivation, ’équation précédente se simplifie sous la forme
o' 93 O(uu')

ow 9
o Y on

=0, (49)

qui est strictement équivalente a I’équation (48).



Différences finies compactes (20%)
. En posant a = 0, approximation aux différences finies compactes se réduit a

6 0 0
o (i - u?y). (50)

De maniere a déterminer ’ordre de cette approximation, on développe chacun des termes du mem-
bre de droite en série de Taylor

0 1 h 2 h h4 4 h 5
w®) = b a4 S S 4 o+ S £ 0(0), (51)

série qui est interrompue au cinquieéme ordre puisque u € C°(R). Par substitution dans la relation
(50), on trouve l'erreur d’approximation

T@”5<<”+Z‘@+Z @>iomw (52)

Pour que I'approximation soit du second ordre, il faut annuler les termes d’ordre zéro. On a donc

g=1, (53)

et on retrouve ainsi I’approximation classique aux différences finies centrée du second ordre

RORENRC
ugl) — 'L+12h 1—1 :l:O(hQ) (54)

. Pour déterminer I'erreur d’approximation dans le cas général, on développe les dérivées premieres
en série de Taylor

2
T L w+h ul® £ 0(n%). (55)
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Par substitution des relations (51) et (55) dans lapproximation aux différences finies compactes,
on trouve

h4
T= (20 + 1)u1(-1) + ahQuES) + an
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ul® -8 (ugl) + };, ® 4 % (5)) + O(h"). (56)

. Pour que 'approximation soit du quatrieme ordre, il faut annuler les termes d’ordre zéro et d’ordre
deux. On obtient ainsi le systéme d’équations

200 — f=—1, (57)
la— B =0, (58)

dont la solution est donnée par

(o, B) = <411 ;) : (59)

On obtient ainsi 'approximation aux différences finies compactes du quatriéme ordre

ul?) —ul) £ 0. (60)
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. L’avantage de ce schéma est qu’on obtient une approximation du quatrieme ordre avec un support
de trois points. Il faudrait un support de cinq points pour obtenir le méme ordre avec une approche
classique.

Le désavantage est que les dérivées nodales ne peuvent pas étre obtenues de maniere explicite. Il
faut donc établir et résoudre un systeme d’équations linéaires pour les déterminer.



