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Matériel

e Le seul document autorisé est un résumé personnel, manuscrit et non-photocopié
de 12 pages (6 feuilles recto-verso).

e Aucun appareil électronique (calculatrice, téléphone portable, ordinateur, etc.) ne
peut étre utilisé pendant ’examen.

Informations

e [’examen compte six problemes dont la pondération est indiquée entre parentheses
dans le titre.

e La clarté des explications ainsi que la qualité de la présentation seront prises en
compte dans I’évaluation.

Important

e Les problemes doivent étre résolus en utilisant les feuilles de réponse fournies.
N'utilisez pas ces feuilles comme brouillon!
Chaque probleme doit étre résolu sur une ou plusieurs feuilles de réponse séparées.
Sur chaque feuille, indiquez votre nom et prénom ainsi que le numéro du probleme
traité.



1 Différences finies (15%)

Comme illustré a la figure 1, on considere trois noeuds qui appartiennent & un maillage non-uniforme et
monodimensionel. Ces noeuds sont respectivement placés aux coordonnées x;_1, X; et X;4+1. La longueur
des intervalles est donnée par

X; — Xi—1 = a >0, (1)
Xi+1 — X§ = ﬂ > 0. (2)

1. Etablir un schéma aux différences finies permettant d’approximer la dérivée seconde selon z du
champ up,(z) au noeud ¢ en utilisant ses valeurs nodales u;_1, u; et u;y.

2. Déterminer 'ordre de cette approximation en fonction de «, 8 et A = 8 — a.

3. Determiner 'ordre de cette approximation si les noeuds sont équidistants.

U;—1 u; U;41
a
Oe———1
Xi—1 X3 Xi+1

Figure 1: Maillage monodimensionel et non-uniforme.



2 Equations aux dérivées partielles (15%)

On considere le systeme d’équations aux dérivées partielles donné par

ou ou ov
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+ 3t+ ox ’

et on demande d’en déterminer
1. le caractere mathématique,
2. les courbes caractéristiques,

3. les invariants de Riemann.



3 Laboratoires (20%)
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PARAMETERS

.1 Celerity
1e+00 ;

.2 Mesh
2 ; np = 33 ;

.3 Time-integration

theta = 1/2 ; dt = 1e-02 ; tf = 4e+00 ;
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.4 Initial conditions
1 ; sigma = le+01 ;

COMPUTATION

.1 Mesh
linspace(-L/2,+L/2,np)’ ;
L/ (ap-1) ;

.2 Mass matrix

M = kron(speye(2,2),speye(np,np)) ;
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.3 Differential operators

ones(np,1) ;

(1/h)*spdiags([-e +e], O:+1,np-1,np ) ;
(1/n)*spdiags([-e +e],-1: O,np ,np-1) ;

.4 Spatial matrix

sparse(np,np) ;

speye(up,np) ;

[0, -T ; -divx(c™2*grad) , 0] ;

.5 Discrete operators
M/dt+theta*xA ;
M/dt+(theta-1)*A ;

.6 Boundary conditions
[1 ; zeros(np-2,1) ; 1] ;
kron(speye(2,2) ,spdiags( d,0,np,np)) ;

= kron(speye(2,2),spdiags(~d,0,np,np)) ;
= FxH+D ;

F*R+D ;

.7 Initial conditions
[Uoxexp(-(sigma*x."2)) ; zeros(np,1)] ;

.8 Numerical solution
round (tf/dt)+1 ;
zeros(2#np,nt) ; uh(:,1) = uo ;

for it = 2 : nt

t(it) = (it-1)*dt ;
uh(:,it) = H\(R*uh(:,it-1)) ;
end



. Déterminer ’équation aux dérivées partielles qui est résolue numériquement en exécutant ce code
Matlab.

. Déterminer les conditions aux limites et initiales.
. Déterminer les méthodes de discrétisation spatiale et d’intégration temporelle utilisées.

. Commenter l'ordre de convergence des méthodes d’approximation numérique ainsi que le type
d’erreurs qu’elles introduisent.



4 Discrétisation spatiale (20%)

On considere ici I’équation d’advection-diffusion monodimensionnelle

A(u) = —V7—|—c— =0, Q=][01],

avec v,c € R% et dont la solution analytique est donnée par
_ep(§) -1
exp (ﬁ) -1

1. Discrétiser le probleme (3) en utilisant un schéma aux différences finies centré du second ordre
pour la dérivée seconde, et un schéma aux différences finies amont du second ordre pour la dérivée
premiere. Expliciter toutes les étapes nécessaires.

2. Etablir I’équation modifiée correspondant a 1’équation discrete obtenue.

3. En déduire les éventuels avantages et/ou inconvénients par rapport aux méthodes de diffusion
artificielle vue en cours (Upwind premier ordre ou Sharfeter-Gummel).

4. L’algorithme de Thomas est-il applicable pour la résolution du systeme d’équation résultant de la
discrétisation de ’équation (3)? Justifiez votre réponse.



5 Relation de dispersion (10%)

On considere ’équation de Schrodinger décrivant la fonction d’onde v (z,t) d’une particule quantique

avec i I'unité imaginaire, i la constante de Planck, i la masse de la particule et V' son énergie potentielle.
1. Etablir la relation de dispersion associée a cette équation ainsi que la vitesse de phase.
2. Commenter et interpréter les différences et similitudes par rapport a ’équation d’advection

o, o
o Cor



6 Equations de Navier—Stokes (20%)

On considere la situation décrite par la figure 2, c’est-a-dire un fluide de densité p et de viscosité p qui
s’écoule de maniére incompressible autour d’un profil d’aile dans un domaine bidimensionnel €2 trés grand
par rapport a la longueur L. Nous admettrons que 1’écoulement s’effectue dans le champ de pesanteur

—> v = (Voo,0)T
—>

> P = DPoo

— < ~
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Figure 2: Domaine d’écoulement et définitions.

0y Q

terrestre représenté par le vecteur d’accélération g = (0, —g,) constant, que I’angle d’incidence du profil
soit tres faible, et qu’il y ait adhérence du fluide a la paroi.

On désire connaitre le champ de pression p(™) associé & un champ de vitesse instantané v(™ donné.
Pour cela, on décide de résoudre une équation de Poisson avec les conditions aux limites suivantes

{ V2p(n) — _(V . v(”)) (V- U(”))T7 sur €2, (4)

vp.n = 0, sur 0y,

avec 1 la normale extérieure au domaine.

Compte tenu des parametres réunis dans le tableau 1 et des hypotheses précédentes, déterminer si
la résolution de 1’équation de Poisson avec les conditions aux limites (4) permet d’obtenir une bonne
approximation du champ de pression p(™ associé au champ de vitesse v(").

Masse volumique (p) 10°
Viscosité (1) 1073
Vitesse (Vo) 10°
Longueur du profil (L) 10°

Table 1: Parametres.



