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Méthodes de discrétisation en fluides
Dr. Marc A. Habisreutinger
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Matériel

• Le seul document autorisé est un résumé personnel, manuscrit et non-photocopié
de 12 pages (6 feuilles recto-verso).

• Aucun appareil électronique (calculatrice, téléphone portable, ordinateur, etc.) ne
peut être utilisé pendant l’examen.

Informations

• L’examen compte six problèmes dont la pondération est indiquée entre parenthèses
dans le titre.

• La clarté des explications ainsi que la qualité de la présentation seront prises en
compte dans l’évaluation.

Important

• Les problèmes doivent être résolus en utilisant les feuilles de réponse fournies.
N’utilisez pas ces feuilles comme brouillon!

• Chaque problème doit être résolu sur une ou plusieurs feuilles de réponse séparées.
• Sur chaque feuille, indiquez votre nom et prénom ainsi que le numéro du problème

traité.
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1 Différences finies (15%)

Comme illustré à la figure 1, on considère trois noeuds qui appartiennent à un maillage non-uniforme et
monodimensionel. Ces noeuds sont respectivement placés aux coordonnées xi−1, xi et xi+1. La longueur
des intervalles est donnée par

xi − xi−1 = α > 0, (1)

xi+1 − xi = β > 0. (2)

1. Etablir un schéma aux différences finies permettant d’approximer la dérivée seconde selon x du
champ uh(x) au noeud i en utilisant ses valeurs nodales ui−1, ui et ui+1.

2. Déterminer l’ordre de cette approximation en fonction de α, β et ∆ = β − α.

3. Determiner l’ordre de cette approximation si les noeuds sont équidistants.

Figure 1: Maillage monodimensionel et non-uniforme.
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2 Equations aux dérivées partielles (15%)

On considère le système d’équations aux dérivées partielles donné par

+3
∂u

∂t
+ 6

∂u

∂x
+ 3

∂v

∂x
= 0,

+2
∂v

∂t
+ 6

∂v

∂x
= 0,

et on demande d’en déterminer

1. le caractère mathématique,

2. les courbes caractéristiques,

3. les invariants de Riemann.
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3 Laboratoires (20%)

1 %% 1. PARAMETERS

2

3 % 1.1 Celerity

4 c = 1e+00 ;

5

6 % 1.2 Mesh

7 L = 2 ; np = 33 ;

8

9 % 1.3 Time-integration

10 theta = 1/2 ; dt = 1e-02 ; tf = 4e+00 ;

11

12 % 1.4 Initial conditions

13 Uo = 1 ; sigma = 1e+01 ;

14

15 %% 2. COMPUTATION

16

17 % 2.1 Mesh

18 x = linspace(-L/2,+L/2,np)’ ;

19 h = L/(np-1) ;

20

21 % 2.2 Mass matrix

22 M = kron(speye(2,2),speye(np,np)) ;

23

24 % 2.3 Differential operators

25 e = ones(np,1) ;

26 grad = (1/h)*spdiags([-e +e], 0:+1,np-1,np ) ;

27 div = (1/h)*spdiags([-e +e],-1: 0,np ,np-1) ;

28

29 % 2.4 Spatial matrix

30 O = sparse(np,np) ;

31 I = speye(np,np) ;

32 A = [ O , -I ; -div*(c^2*grad) , O ] ;

33

34 % 2.5 Discrete operators

35 H = M/dt+theta*A ;

36 R = M/dt+(theta-1)*A ;

37

38 % 2.6 Boundary conditions

39 d = [1 ; zeros(np-2,1) ; 1] ;

40 D = kron(speye(2,2),spdiags( d,0,np,np)) ;

41 F = kron(speye(2,2),spdiags(~d,0,np,np)) ;

42 H = F*H+D ;

43 R = F*R+D ;

44

45 % 2.7 Initial conditions

46 uo = [Uo*exp(-(sigma*x.^2)) ; zeros(np,1)] ;

47

48 % 2.8 Numerical solution

49 nt = round(tf/dt)+1 ;

50 uh = zeros(2*np,nt) ; uh(:,1) = uo ;

51 for it = 2 : nt

52 t(it) = (it-1)*dt ;

53 uh(:,it) = H\(R*uh(:,it-1)) ;

54 end
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1. Déterminer l’équation aux dérivées partielles qui est résolue numériquement en exécutant ce code
Matlab.

2. Déterminer les conditions aux limites et initiales.

3. Déterminer les méthodes de discrétisation spatiale et d’intégration temporelle utilisées.

4. Commenter l’ordre de convergence des méthodes d’approximation numérique ainsi que le type
d’erreurs qu’elles introduisent.
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4 Discrétisation spatiale (20%)

On considère ici l’équation d’advection-diffusion monodimensionnelle A(u) = −ν ∂
2u

∂x2
+ c

∂u

∂x
= 0, Ω = [0 1],

u(0) = 0, u(1) = 1,

(3)

avec ν, c ∈ R∗+ et dont la solution analytique est donnée par

u(x) =
exp

(
cx
ν

)
− 1

exp
(
c
ν

)
− 1

.

1. Discrétiser le problème (3) en utilisant un schéma aux différences finies centré du second ordre
pour la dérivée seconde, et un schéma aux différences finies amont du second ordre pour la dérivée
première. Expliciter toutes les étapes nécessaires.

2. Etablir l’équation modifiée correspondant à l’équation discrète obtenue.

3. En déduire les éventuels avantages et/ou inconvénients par rapport aux méthodes de diffusion
artificielle vue en cours (Upwind premier ordre ou Sharfeter–Gummel).

4. L’algorithme de Thomas est-il applicable pour la résolution du système d’équation résultant de la
discrétisation de l’équation (3)? Justifiez votre réponse.
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5 Relation de dispersion (10%)

On considère l’équation de Schrödinger décrivant la fonction d’onde ψ(x, t) d’une particule quantique

i~
∂ψ

∂t
+

~
2µ

∂2ψ

∂x2
= V ψ,

avec i l’unité imaginaire, ~ la constante de Planck, µ la masse de la particule et V son énergie potentielle.

1. Etablir la relation de dispersion associée à cette équation ainsi que la vitesse de phase.

2. Commenter et interpréter les différences et similitudes par rapport à l’équation d’advection

∂u

∂t
+ c

∂u

∂x
= 0.
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6 Equations de Navier–Stokes (20%)

On considère la situation décrite par la figure 2, c’est-à-dire un fluide de densité ρ et de viscosité µ qui
s’écoule de manière incompressible autour d’un profil d’aile dans un domaine bidimensionnel Ω très grand
par rapport à la longueur L. Nous admettrons que l’écoulement s’effectue dans le champ de pesanteur

Figure 2: Domaine d’écoulement et définitions.

terrestre représenté par le vecteur d’accélération g = (0,−gy) constant, que l’angle d’incidence du profil
soit très faible, et qu’il y ait adhérence du fluide à la paroi.

On désire connâıtre le champ de pression p(n) associé à un champ de vitesse instantané v(n) donné.
Pour cela, on décide de résoudre une équation de Poisson avec les conditions aux limites suivantes{

∇2p(n) = −(∇ · v(n)) : (∇ · v(n))T, sur Ω,

∇p(n) · n = 0, sur ∂ΩN ,
(4)

avec n la normale extérieure au domaine.
Compte tenu des paramètres réunis dans le tableau 1 et des hypothèses précédentes, déterminer si

la résolution de l’équation de Poisson avec les conditions aux limites (4) permet d’obtenir une bonne
approximation du champ de pression p(n) associé au champ de vitesse v(n).

Masse volumique (ρ) 103

Viscosité (µ) 10−3

Vitesse (V∞) 100

Longueur du profil (L) 100

Table 1: Paramètres.
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