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Enoncé de l’examen écrit du lundi 30 juin 2014, de 08:15 à 11:15, salle CO3
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Matériel

• Le seul document autorisé est un résumé personnel, manuscrit et non-photocopié
de 12 pages (6 feuilles recto-verso).

• Aucun appareil électronique (calculatrice, téléphone portable, ordinateur, etc.) ne
peut être utilisé pendant l’examen.

Informations

• L’examen compte six problèmes dont la pondération est indiquée entre parenthèses
dans le titre.

• La clarté des explications ainsi que la qualité de la présentation seront prises en
compte dans l’évaluation.

Important

• Les problèmes doivent être résolus en utilisant les feuilles de réponse fournies.
N’utilisez pas ces feuilles comme brouillon!

• Chaque problème doit être résolu sur une ou plusieurs feuilles de réponse séparées.
• Sur chaque feuille, indiquez votre nom et prénom ainsi que le numéro du problème

traité.
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1 Différences finies (15%)

Comme illustré à la figure 1, on considère trois noeuds qui appartiennent à un maillage non-uniforme et
monodimensionel. Ces noeuds sont respectivement placés aux coordonnées xi−1, xi et xi+1. La longueur

Figure 1: Maillage monodimensionel et non-uniforme.

des intervalles est donnée par

xi − xi−1 = α > 0, (1)

xi+1 − xi = β > 0. (2)

1. Etablir un schéma aux différences finies permettant d’approximer la dérivée première selon x du
champ uh(x) au noeud i en utilisant ses valeurs nodales ui−1, ui et ui+1.

2. Déterminer l’ordre de cette approximation en fonction de α, β et ∆ = β − α.

3. Determiner l’ordre de cette approximation si les noeuds sont équidistants, en posant α = β ≡ h.

2



2 Equations aux dérivées partielles (15%)

On considère le système d’équations aux dérivées partielles donné par

+
∂u

∂t
+ 2

∂u

∂x
+ 1

∂v

∂x
= 0,

+
∂v

∂t
+ 3

∂v

∂x
= 0,

et on demande d’en déterminer

1. le caractère mathématique,

2. les courbes caractéristiques,

3. les invariants de Riemann.
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3 Laboratoires (25%)

1 %% 1. PARAMETERS

2

3 % 1.1 Mesh parameters

4 np = 101 ; L = 2 ;

5

6 % 1.2 Equation coefficients

7 nu = +1e-01 ;

8

9 % 1.3 Time-scheme parameters

10 dt = +1e-02 ; nt = 1e+02 ;

11

12

13 %% 2. COMPUTATION

14

15 % 2.1 Mesh generation

16 x = (linspace(-L/2,+L/2,np))’ ;

17 h = L/(np-1) ;

18

19 % 2.2 Semi-discrete operators

20 e = ones(np,1) ;

21 M = spdiags(e,0,np,np) ;

22 A = spdiags(-(nu/h^2)*[+1*e -2*e +1*e],[-1:1],np,np) ;

23

24 % 2.3 Discrete operators

25 H = M/dt ;

26 R = M/dt-A ;

27

28 % 2.4 Boundary conditions

29 H( 1, :) = 0 ; H( 1, 1) = 1 ;

30 H(np, :) = 0 ; H(np,np) = 1 ;

31

32 R( 1, :) = 0 ; R( 1, 1) = 1 ;

33 R(np, :) = 0 ; R(np,np) = 1 ;

34

35 % 2.5 Time-integration

36 uh = zeros(np,nt) ;

37 uh(:,1) = sin((2*pi/L)*x) ;

38 for it = 2 : nt

39 t(it,1) = (it-1)*dt ;

40 uh(:,it) = H\(R*uh(:,it-1)) ;

41 end

1. Déterminer l’équation aux dérivées partielles qui est résolue numériquement en exécutant ce code
Matlab ainsi que les conditions aux limites et initiales.

2. Déterminer les méthodes de discrétisation spatiale et d’intégration temporelle utilisées.

3. Déterminer la caractère des solutions d’équilibre au niveau semi-discret? Justifiez votre réponse
sans forcément faire de calculs.

4. Déterminer la caractère des solutions d’équilibre au niveau discret? Justifiez votre réponse sans
forcément faire de calculs.

5. La méthode d’approximation numérique utilisée vous semble-t-elle appropriée pour la résolution
de cette équation? Justifiez votre réponse.
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4 Analyses de stabilité (20%)

On considère l’équation aux dérivées partielles suivante

∂u

∂t
+ ν

∂2u

∂x2
= f, (3)

avec le coefficient ν > 0, des conditions aux limites périodiques et un terme de forçage f .

1. Discrétiser cette équation en espace par un schéma aux différences finies centré du second ordre.

2. Au niveau semi-discret, existe-t-il une restriction sur les paramètres de discrétisation pour conserver
le caractère des solutions d’équilibre. Le cas échéant, déterminer cette restriction.

3. Discrétiser les équations semi-discrètes en temps par la méthode d’Euler implicite.

4. Au niveau discret, existe-t-il une restriction sur les paramètres de discrétisation pour conserver le
caractère des solutions d’équilibre. Le cas échéant, déterminer cette restriction.

Indication

Les valeurs propres d’une matrice circulaire et tridiagonale

L(α, β, γ) =


α β γ

γ
. . .

. . .

. . .
. . . β

β γ α

 (4)

sont données par

σ(k) = α+ (β + γ) cos(ψk) + i(β − γ) sin(ψk), ψk = 2π
k − 1

p + 1
, (5)

où p représente la taille de la matrice.
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5 Linéarisation et opérateur adjoint (10%)

On considère l’équation de Burgers
∂u

∂t
− ν

∂2u

∂x2
+ u

∂u

∂x
= f, (6)

où f est un terme de forçage et ν le coefficient de diffusion.

1. Etablir, par la méthode de votre choix, la forme linéarisée de cette équation autour d’une solution
d’équilibre u(x).

2. Déterminer les parties symétrique et anti-symétrique de l’opérateur spatial linéarisé ainsi que son
adjoint.
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6 Equations de Navier–Stokes (15%)

On considère la situation décrite par la figure 2, c’est-à-dire un fluide de densité ρ et de viscosité µ
en écoulement incompressible autour d’un profil d’aile dans un domaine doublement connexe Ω très
grand par rapport à la longueur L. Nous admettrons que les forces volumiques soient nulles, que l’angle

Figure 2: Domaine d’écoulement et définitions.

d’incidence du profil soit très faible, et qu’il y ait adhérence du fluide à la paroi du profil.
On désire connâıtre le champ de pression p(n) associé à un champ de vitesse instantané v(n) donné.

Pour cela, on décide de résoudre une équation de Poisson avec les conditions aux limites suivantes
∇2p(n) = −(∇ · v(n)) : (∇ · v(n))T, sur Ω,

∇p(n) · n = 0, sur ∂ΩN ,

p(n) = p∞, sur ∂ΩD,

(7)

où p∞ est la pression à l’infini et n la normale extérieure au domaine.
Compte tenu des paramètres réunis dans le tableau 1 et des hypothèses précédentes, déterminer si

la résolution de l’équation de Poisson avec les conditions aux limites (7) permet d’obtenir une bonne
approximation du champ de pression p(n) associé au champ de vitesse v(n). Si ce n’est pas le cas, proposer
une solution alternative.

Masse volumique (ρ) 100

Viscosité (µ) 10−6

Vitesse (V∞) 100

Longueur du profil (L) 100

Table 1: Paramètres.
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