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Matériel

e Tous les documents peuvent étre consultés mais ils ne peuvent en aucun cas étre
échangés entre les étudiants pendant I’examen.

e Aucun appareil électronique (calculatrice, téléphone portable, ordinateur, etc.) ne
peut étre utilisé pendant ’examen.

Informations

e [’examen compte six problemes dont la pondération est indiquée entre parentheses
dans le titre.

e La clarté des explications ainsi que la qualité de la présentation seront prises en
compte dans I’évaluation.

Important

e Les problemes doivent étre résolus en utilisant les feuilles de réponse fournies.
N’utilisez pas ces feuilles comme brouillon!
Chaque probleme doit étre résolu sur une ou plusieurs feuilles de réponse séparées.
Sur chaque feuille, indiquez votre nom et prénom ainsi que le numéro du probleme
traité.



1 Différences finies (10%)

On considére le schéma aux différences finies suivant
0"
ox™

. +3u; —4u;_1 +u;_o
B 2h

+ O(h™).

Xi
1. Déterminer la dérivée que ce schéma approxime (n).

2. Déterminer l'ordre de cette approximation (m).



2 Equations aux dérivées partielles (15%)

On considere le systeme d’équations aux dérivées partielles donné par

Ou  Ou  Ov
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+ 0,

et on demande de déterminer
1. son caractére mathématique,
2. ses courbes caractéristiques,

3. ses invariants de Riemann.
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Laboratoires (25%)

%h 1. PARAMETERS

% 1.1 Mesh parameters
np = 1e+02 ; L = 2 ;

% 1.2 Equation coefficients
c = +1e+00 ;

% 1.3 Time-scheme parameters

theta = 0 ; dt = 2e-02 ; nt = 1let+01 ;
%h 2. COMPUTATION

% 2.1 Mesh generation

x = linspace(-L/2,+L/2,np+1) ; x = transpose(x(l:np)) ;
L/np ;

=3
]

% 2.2 Semi-discrete operators
e = ones(up,1) ;

M = spdiags(e,0,np,np) ;

A

% 2.3 Wave-number
k = 2%pi/L ;

% 2.4 Discrete operators
M/dt+theta*A ;
= M/dt+(theta-1)*A ;

o o
nn

% 2.5 Time-integration
uh = zeros(up,nt) ; uh(:,1) = sin(k*x) ;
for it = 2 : nt
uh(:,it) = H\(R*uh(:,it-1)) ;
end

% 2.6 Stability analysis
lambda = -eig(full(A),full(M)) ;
gamma = +eig(full(R),full(H)) ;

(c/h)*spdiags([-1*e +1xe Oxe],-1:+1,np,np) ; A(l,end) = -(c/h) ;

~ W

. Déterminer ’équation aux dérivées partielles qui est résolue numériquement en exécutant ce code
ainsi que les conditions aux limites et initiales.

. Déterminer les méthodes de discrétisation spatiale et d’intégration temporelle utilisées.
. Déterminer la caractere des solutions d’équilibre au niveau semi-discret? Justifiez votre réponse.
. Déterminer la caractere des solutions d’équilibre au niveau discret? Justifiez votre réponse.

. La méthode d’approximation numérique utilisée vous semble-t-elle appropriée pour la résolution
de cette équation? Justifiez votre réponse.



4 Analyses de stabilité (20%)

On considere I’équation d’advection instationnaire

ou ou

E*‘Cafx:f,

avec le coefficient d’advection ¢ > 0, des conditions aux limites périodiques et un terme de forgage f.

1. Discrétiser cette équation en espace par un schéma aux différences finies progressif du premier
ordre.

2. Au niveau semi-discret, existe-t-il une restriction sur les parametres de discrétisation pour conserver
le caractere des solutions d’équilibre. Le cas échéant, déterminer cette restriction.

3. Discrétiser les équations semi-discretes en temps par la méthode d’Euler implicite.

4. Au niveau discret, existe-t-il une restriction sur les parametres de discrétisation pour conserver le
caractere des solutions d’équilibre. Le cas échéant, déterminer cette restriction.

Indication

Les valeurs propres d’une matrice circulaire et tridiagonale
a B gl

L(a,8,7)=|

O ™

B gl
sont données par

k-1

o) = o + (B + ) cos(vg) +1(8 — ) sin(vx), vr = 27rm,

ou p représente la taille de la matrice.



5 Linéarisation (10%)
On considere I’équation de Korteweg—de Vries

ou  u 87112

o o T Yar

ou f est un terme de forcage et a une constante. Etablir, par la méthode de votre choix, la forme
linéarisée de cette équation autour d’une solution d’équilibre .



6 Différences finies compactes (20%)
Soit une fonction u qui dépende de 'espace x et du temps t définie par

u: R2? — R,
(z,t) — wu(z,t).

On suppose que la fonction u € C5(R), Vt, c’est-a-dire que seulement ses cing premiéres dérivées soient
continues. On note sa dérivée n-ieme par rapport a x, évaluée au noeud 7 et au pas de temps k

m) _ 0"u
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et on considere 'approximation aux différences finies compactes

onf®, + 0+ anl®; = 2 @l®, —ul®), )
avec la pas de discrétisation
h = X; — Xi—1, Vi.

1. En posant o = 0, déterminer le coefficient S pour que Papproximation (1) soit du second ordre en

h.

2. En développant tous les termes de la relation (1) en série de Taylor, déterminer ’erreur d’approximation
dans le cas général.

3. Etablir un systéme d’équations pour les coefficients « et 8 de maniére & ce que Papproximation (1)
soit du quatrieme ordre en h, puis déterminer ces coefficients.

4. Pourquoi le schéma trouvé au point 3 est-il qualifié de compact? Discuter ses avantages et ses
inconvénients par rapport au schéma établi au point 1 avec o = 0.



