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Enoncé de l’examen écrit du vendredi 21 juin 2013, de 08:30 à 11:30, salle CM1 104
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Génie mécanique 2012-2013 Master semestre 2 1
Passerelle HES-GM 2012-2013 Semestre printemps 2
Science et génie des matériaux 2012-2013 Master semestre 2 1

Matériel

• Tous les documents peuvent être consultés mais ils ne peuvent en aucun cas être
échangés entre les étudiants pendant l’examen.

• Aucun appareil électronique (calculatrice, téléphone portable, ordinateur, etc.) ne
peut être utilisé pendant l’examen.

Informations

• L’examen compte six problèmes dont la pondération est indiquée entre parenthèses
dans le titre.

• La clarté des explications ainsi que la qualité de la présentation seront prises en
compte dans l’évaluation.

Important

• Les problèmes doivent être résolus en utilisant les feuilles de réponse fournies.
N’utilisez pas ces feuilles comme brouillon!

• Chaque problème doit être résolu sur une ou plusieurs feuilles de réponse séparées.
• Sur chaque feuille, indiquez votre nom et prénom ainsi que le numéro du problème

traité.
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1 Différences finies (10%)

On considère le schéma aux différences finies suivant

∂nu

∂xn

∣∣∣∣
xi

=
+3ui − 4ui−1 + ui−2

2h
±O(hm).

1. Déterminer la dérivée que ce schéma approxime (n).

2. Déterminer l’ordre de cette approximation (m).
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2 Equations aux dérivées partielles (15%)

On considère le système d’équations aux dérivées partielles donné par

+
∂u

∂t
+
∂u

∂x
+
∂v

∂x
= 0,

+
∂v

∂t
− ∂u

∂x
+
∂v

∂x
= 0,

et on demande de déterminer

1. son caractère mathématique,

2. ses courbes caractéristiques,

3. ses invariants de Riemann.
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3 Laboratoires (25%)

1 %% 1. PARAMETERS

2

3 % 1.1 Mesh parameters

4 np = 1e+02 ; L = 2 ;

5

6 % 1.2 Equation coefficients

7 c = +1e+00 ;

8

9 % 1.3 Time-scheme parameters

10 theta = 0 ; dt = 2e-02 ; nt = 1e+01 ;

11

12

13 %% 2. COMPUTATION

14

15 % 2.1 Mesh generation

16 x = linspace(-L/2,+L/2,np+1) ; x = transpose(x(1:np)) ;

17 h = L/np ;

18

19 % 2.2 Semi-discrete operators

20 e = ones(np,1) ;

21 M = spdiags(e,0,np,np) ;

22 A = (c/h)*spdiags([-1*e +1*e 0*e],-1:+1,np,np) ; A(1,end) = -(c/h) ;

23

24 % 2.3 Wave-number

25 k = 2*pi/L ;

26

27 % 2.4 Discrete operators

28 H = M/dt+theta*A ;

29 R = M/dt+(theta-1)*A ;

30

31 % 2.5 Time-integration

32 uh = zeros(np,nt) ; uh(:,1) = sin(k*x) ;

33 for it = 2 : nt

34 uh(:,it) = H\(R*uh(:,it-1)) ;

35 end

36

37 % 2.6 Stability analysis

38 lambda = -eig(full(A),full(M)) ;

39 gamma = +eig(full(R),full(H)) ;

1. Déterminer l’équation aux dérivées partielles qui est résolue numériquement en exécutant ce code
ainsi que les conditions aux limites et initiales.

2. Déterminer les méthodes de discrétisation spatiale et d’intégration temporelle utilisées.

3. Déterminer la caractère des solutions d’équilibre au niveau semi-discret? Justifiez votre réponse.

4. Déterminer la caractère des solutions d’équilibre au niveau discret? Justifiez votre réponse.

5. La méthode d’approximation numérique utilisée vous semble-t-elle appropriée pour la résolution
de cette équation? Justifiez votre réponse.
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4 Analyses de stabilité (20%)

On considère l’équation d’advection instationnaire

∂u

∂t
+ c

∂u

∂x
= f,

avec le coefficient d’advection c > 0, des conditions aux limites périodiques et un terme de forçage f .

1. Discrétiser cette équation en espace par un schéma aux différences finies progressif du premier
ordre.

2. Au niveau semi-discret, existe-t-il une restriction sur les paramètres de discrétisation pour conserver
le caractère des solutions d’équilibre. Le cas échéant, déterminer cette restriction.

3. Discrétiser les équations semi-discrètes en temps par la méthode d’Euler implicite.

4. Au niveau discret, existe-t-il une restriction sur les paramètres de discrétisation pour conserver le
caractère des solutions d’équilibre. Le cas échéant, déterminer cette restriction.

Indication

Les valeurs propres d’une matrice circulaire et tridiagonale

L(α, β, γ) =


α β γ

γ
. . .

. . .

. . .
. . . β

β γ α


sont données par

σ(k) = α+ (β + γ) cos(ψk) + i(β − γ) sin(ψk), ψk = 2π
k − 1

p + 1
,

où p représente la taille de la matrice.
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5 Linéarisation (10%)

On considère l’équation de Korteweg–de Vries

∂u

∂t
+
∂3u

∂x3
+ α

∂u2

∂x
= f,

où f est un terme de forçage et α une constante. Etablir, par la méthode de votre choix, la forme
linéarisée de cette équation autour d’une solution d’équilibre u.
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6 Différences finies compactes (20%)

Soit une fonction u qui dépende de l’espace x et du temps t définie par

u : R2 → R,
(x, t) → u(x, t).

On suppose que la fonction u ∈ C5(R), ∀t, c’est-à-dire que seulement ses cinq premières dérivées soient
continues. On note sa dérivée n-ième par rapport à x, évaluée au noeud i et au pas de temps k

u
(n)
i =

∂nu

∂xn

∣∣∣∣
xi,tk

,

et on considère l’approximation aux différences finies compactes

αu
(1)
i+1 + u

(1)
i + αu

(1)
i−1 '

β

2h
(u

(0)
i+1 − u

(0)
i−1), (1)

avec la pas de discrétisation
h = xi − xi−1, ∀i.

1. En posant α = 0, déterminer le coefficient β pour que l’approximation (1) soit du second ordre en
h.

2. En développant tous les termes de la relation (1) en série de Taylor, déterminer l’erreur d’approximation
dans le cas général.

3. Etablir un système d’équations pour les coefficients α et β de manière à ce que l’approximation (1)
soit du quatrième ordre en h, puis déterminer ces coefficients.

4. Pourquoi le schéma trouvé au point 3 est-il qualifié de compact? Discuter ses avantages et ses
inconvénients par rapport au schéma établi au point 1 avec α = 0.

7


