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Mini-projets

1 Equation de diffusion - Méthode de Chebyshev

On considère le problème aux limites monodimensionnel{
∂2
xxu = f dans Ω = (0, 1),
u = g sur ∂Ω,

(1)

avec le terme source f telle que la solution exacte soit donnée par

u(x) =

{
0 dans Ω1 = (0, 1/2),
(x− 1/2)α dans Ω2 = (1/2, 1),

(2)

et α un entier positif. La fonction u appartient à l’espace de Sobolev Hα(Ω). Les conditions aux limites
de Dirichlet g sont données par la restriction de la solution exacte sur le bord du domaine ∂Ω.

1. Résoudre le problème (1) par une méthode de colocation utilisant la base polynomiale de Cheby-
shev. Par rapport à la méthode des différences finies telle qu’elle a été présentée en cours, il faut
considérer dans ce cas une répartition des noeuds non-homogène dans chaque dimension spatiale
donnée par la relation

xj =
1

2

(
1− cos

(
π(j − 1)

p− 1

))
, j = 1, . . . ,p, (3)

avec p le nombre de noeuds de maillage, et des matrices de dérivation obtenues sur la base des
polynômes de Chebyshev définis par

φ0(x) = 1, (4)

φ1(x) = 2x, (5)

φn+1(x) = 2xφn(x)− φn−1(x). (6)

2. Etudier l’ordre de convergence de l’approximation numérique uh obtenue par cette méthode en
norme L2(Ω) pour différentes valeurs de α et en considérant le théorème suivant:

Si u ∈ Hr+1(Ω), il existe une constante C > 0 telle que

‖u− uh‖L2(Ω) ≤ Ch
r|u|Hr+1(Ω), (7)

avec r un entier positif. En d’autre termes, si u ∈ Hr+1(Ω) la convergence est au plus de l’ordre r.
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2 Equation d’advection diffusion - Maillage non-uniforme

On considère le problème aux limites monodimensionnel{
−ν ∂2

xxu+ c ∂xu = 0, x ∈ Ω = (0, 1),

u(0) = 0, u(1) = 1,
(8)

avec ν le coefficient de diffusion, c la vitesse d’advection, et dont la solution exacte est

u(x) =
exp

(
cx
ν

)
− 1

exp
(

c
ν

)
− 1

=
exp

(
c
ν (x− 1)

)
− exp

(
− c
ν

)
1− exp

(
− c
ν

) . (9)

1. Résoudre le problème (8) par une méthode de colocation aux différences finies centrées du second
ordre pour tous les termes en considérant une répartition des noeuds non-homogène donnée par la
relation

xj =
1

2

(
1− cos

(
π(j − 1)

p− 1

))
, j = 1, . . . ,p, (10)

avec p le nombre de noeuds.

2. Implémenter ensuite des méthodes Upwind du premier et du second ordre.

3. Pour ces trois méthodes, tracer l’erreur par rapport à la solution exacte en fonction du Péclet local
et en déduire leur ordre de convergence respectif.

4. Dans chaque cas, comparer les erreurs obtenues avec la répartion de noeuds non-homogène à celles
obtenues avec une répartition homogène.
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3 Equation de diffusion - Méthode des différences finies com-
pactes

On considère le problème aux limites monodimensionnel

−ν ∂2
xxu = f, x ∈ Ω = (−1, 1), (11)

avec ν le coefficient de diffusion, le terme de forçage f tel que la solution exacte soit

u(x) = cos(kx), k =
2π

L
, (12)

avec la longueur du domaine L = 2 et des conditions aux limites périodiques. On note la dérivée n-ième
de u par rapport à x, évaluée au noeud i

u
(n)
i =

∂nu

∂xn

∣∣∣∣
xi

et on considère une approximation aux différences finies compactes de la forme

αu
(2)
i+1 + u

(2)
i + αu

(2)
i−1 '

δ

h2
u

(0)
i +

β

h2
(u

(0)
i+1 + u

(0)
i−1) +

γ

h2
(u

(0)
i+2 + u

(0)
i−2)

avec h l’intervalle entre deux noeuds de maillage successifs.

Résoudre le problème (11) par une méthode de colocation en utilisant des schémas aux différences
finies compactes et en considérant les quatre cas suivants:

1. α = γ = 0, β à déterminer pour obtenir une approximation du second ordre,

2. α = 0, β et γ à déterminer pour obtenir une approximation du quatrième ordre,

3. γ = 0, α et β à déterminer pour obtenir une approximation du quatrième ordre,

4. γ, α et β à déterminer pour obtenir une approximation du sixième ordre.

Etudier l’évolution de l’erreur par rapport à la solution exacte en fonction de l’intervalle de discrétisation
h et vérifier que l’ordre de convergence correspond aux estimations théoriques.
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4 Equation de Korteweg de Vries - Analyse de stabilité linéaire

Les vagues scélérates font partie des trains d’onde constituant l’état de la mer et sont caractérisées par
une longueur d’onde analogue à celle de leurs voisines. Leur spécificité consiste en un profil beaucoup
plus abrubt et une hauteur environ deux fois plus grande, pouvant atteindre 30 mètres.

Figure 1: Vagues scélérates.

Des études menées en canal de houle sur des vagues se propageant dans une seule direction ont
montré qu’il peut y avoir jusqu’à 100 fois plus de vagues scélérates que la théorie linéaire ne le prévoit.
La fréquence d’apparition est donc nécessairement liée à des phénomènes non-linéaires. D’après certaines
hypothèses, la vague scélérate pourrait apparâıtre en empruntant de l’énergie à ses voisines puis devrait
se propager de manière stable sans se déformer.

Les vagues scélérates pourraient ainsi correspondre à des solutions particulières d’équations non-
linéaires appelées solitons, c’est-à-dire à des ondes qui se propagent sans que leur forme ne change. La
propagation d’une telle vague pourrait être décrite par l’équation de Korteweg–de Vries donnée par

∂u

∂t
+
∂3u

∂x3
+ 6u

∂u

∂x
= 0. (13)

Pour chercher une solution de type soliton se déplaçant à la vitesse c, on suppose que l’onde puisse
s’exprimer comme

u(x, t) = s(x− ct) = s(y). (14)

L’équation de Korteweg–de Vries se réduit ainsi sous la forme de l’équation différentielle ordinaire et
non-linéaire

d3s

dy3
+ (6s− c)

ds

dy
= 0. (15)

La résolution de cette équation permet de trouver la forme du soliton qui se propage à la vitesse c

s(y) =
c

2
sech2

(√
2y

c

)
. (16)

Pour que le soliton puisse effectivement se déplacer sans déformation, il doit être stable par rapport aux
perturbations inhérentes au milieu marin, comme le vent ou les autres vagues.

1. Nous proposons d’étudier la stabilité linéaire du soliton (23) en fonction de sa vitesse de propaga-
tion. Pour ce faire, nous supposons que la solution de l’équation de Korteweg–de Vries soit issue
de la superposition du soliton s et d’une perturbation u′

u(x, t) = s(y) + εu′(x, t), (17)

où ε est une constante suffisamment petite pour rester dans le cas linéaire. L’évolution de la
perturbation peut ainsi être décrite par l’équation de Korteweg–de Vries linéarisée autour du soliton

∂u′

∂t
+
∂3u′

∂x3
+ 6s

∂u′

∂x
+ 6

∂s

∂x
u′ = 0. (18)

En admettant une solution à variables séparables et une dépendance temporelle harmonique, on
écrit

u′(x, t) = û(x) exp(λt), (19)
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où û et λ représentent respectivement les formes et pulsations propres des perturbations. L’équation
(18) se réduit ainsi sous la forme

λû+
∂3û

∂x3
+ 6s

∂û

∂x
+ 6

∂s

∂x
û = 0. (20)

Après discrétisation spatiale, cette équation s’écrit sous la forme d’un problème aux valeurs propres
généralisé donné par

λMû + A(s)û = 0, (21)

permettant de déterminer la stabilité des solitons en fonction de leur vitesse de propagation.
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5 Equation de Benjamin-Bona-Mahony - Analyse de stabilité
linéaire

On considère le même problème qu’au sujet prédédent (section 4) mais en supposant que la propagation
des ondes est gouvernée par l’équation de Benjamin-Bona-Mahony

∂u

∂t
+
∂u

∂x
+ u

∂u

∂x
− ∂3u

∂x2∂t
= 0. (22)

Dans ce cas, le soliton est donné par la relation

s(y) =
3c2

1− c2
sech2

(
1

2
(cx− ct

1− c2
)

)
, (23)

et l’équation linéarisée en régime harmonique s’écrit

λû+
∂û

∂x
+ s

∂û

∂x
+ û

∂s

∂x
− λ∂

2û

∂x2
= 0. (24)
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6 Equation des ondes

On aimerait étudier la propagation d’ondes acoustiques à l’intérieur d’un Cor de Alpes. Pour cela, nous

Figure 2: Cor des Alpes.

supposons que les ondes de pression puissent être décrites par l’équation de d’Alembert

∂2u

∂t2
− c2∇2u = 0, x ∈ Ω, (25)

où c représente leur célerité. En admettant que la longueur d’onde longitudinale l soit beaucoup plus
petite que la longueur caratéristique de l’instrument, nous supposons que la solution de l’équation de
d’Alembert s’écrive sous la forme

u(x, t) = û(x, y) ei(kz−ωt), (26)

où û représente le mode propre transversal, ω sa pulsation, et k son nombre d’onde longitudinal. En
substituant cette relation dans l’équation de d’Alembert, on obtient(

(ck)2 − ω2
)
û− c2∇̂2û = 0, (27)

avec ∇̂ = (∂x, ∂y) l’opérateur laplacien transversal. Après discrétisation spatiale, cette équation s’écrit
sous la forme d’un problème aux valeurs propres généralisé donné par

Aû = λMû, λ = k2 −
(ω
c

)2

. (28)

1. En supposant des parois infiniment rigides et une section carée de taille L constante, déterminer
analytiquement les modes propres transversaux ainsi que leur pulsation.

2. Déterminer numériquement ces mêmes grandeurs et procéder à une étude de convergence des
résultats numériques. En déduire l’ordre de convergence des différents modes propres.

3. Etablir et interpréter la relation de dispersion inverse k(ω), avec k ∈ C et ω ∈ R. En déduire quels
modes peuvent se propager, et quels modes sont atténués, à travers l’instrument.
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