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Mini-projets

1 Equation de diffusion - Méthode de Chebyshev

On considere le probleme aux limites monodimensionnel

2.u=f dans Q=(0,1),
u=g sur 0,

avec le terme source f telle que la solution exacte soit donnée par

(o0 dans Q; =(0,1/2),
u(z) = { (x —1/2)* dans Q9 = (1/2,1),

(2)

et a un entier positif. La fonction u appartient a ’espace de Sobolev H*(f2). Les conditions aux limites

de Dirichlet g sont données par la restriction de la solution exacte sur le bord du domaine 0f2.

1. Résoudre le probléme (1) par une méthode de colocation utilisant la base polynomiale de Cheby-
shev. Par rapport a la méthode des différences finies telle qu’elle a été présentée en cours, il faut
considérer dans ce cas une répartition des noeuds non-homogene dans chaque dimension spatiale

donnée par la relation

1 (7 —1) .
i=—(1- _— =1,...
(e (E)) o

3)

avec p le nombre de noeuds de maillage, et des matrices de dérivation obtenues sur la base des

polynémes de Chebyshev définis par

po(z) =1,
¢1(x) = 2z,
Pnt1(2) = 22¢n(2) — Pn—1(2).

2. Etudier l'ordre de convergence de 'approximation numérique up obtenue par cette méthode en

norme Lo () pour différentes valeurs de « et en considérant le théoréeme suivant:
Si u € H'1(Q), il existe une constante C' > 0 telle que
flu — uhHLz(Q) < Chr|U‘Hr+1(Q)7

avec T un entier positif. En d’autre termes, si u € H*T1(£2) la convergence est au plus de I'ordre 1.

(7)



2 Equation d’advection diffusion - Maillage non-uniforme
On considere le probleme aux limites monodimensionnel
v u+cdu=0, zeQ=(0,1),
{ u(0) =0, u(l) =1,
avec v le coefficient de diffusion, c la vitesse d’advection, et dont la solution exacte est

_ep(F) -1 e (f—1) —exp(=5)
exp (£)-1 B 1—exp(—%) : 9)

1. Résoudre le probléme (8) par une méthode de colocation aux différences finies centrées du second
ordre pour tous les termes en considérant une répartition des noeuds non-homogene donnée par la

relation 1 o
XJ:2<1—COS(7T§)]__1)>>a ]:17,13, (10)

avec p le nombre de noeuds.
2. Implémenter ensuite des méthodes Upwind du premier et du second ordre.

3. Pour ces trois méthodes, tracer I'erreur par rapport a la solution exacte en fonction du Péclet local
et en déduire leur ordre de convergence respectif.

4. Dans chaque cas, comparer les erreurs obtenues avec la répartion de noeuds non-homogene a celles
obtenues avec une répartition homogene.



3 Equation de diffusion - Méthode des différences finies com-

pactes
On considere le probleme aux limites monodimensionnel

v u=f z€Q=(-11),

avec v le coefficient de diffusion, le terme de forgage f tel que la solution exacte soit

2T

u(z) = cos(kx), k= T

(11)

(12)

avec la longueur du domaine L = 2 et des conditions aux limites périodiques. On note la dérivée n-ieme

de u par rapport a z, évaluée au noeud 4

m) _ 0"u
u" = e

Xi

et on considere une approximation aux différences finies compactes de la forme

5
@ u® +an?, = 20 4 2 +ul®) + L, +ul)

au =17 p2 i h2 h2

avec h l'intervalle entre deux noeuds de maillage successifs.

Résoudre le probleme (11) par une méthode de colocation en utilisant des schémas aux différences

finies compactes et en considérant les quatre cas suivants:
1. a =~ =0, 8 a déterminer pour obtenir une approximation du second ordre,
2. a =0, B et v a déterminer pour obtenir une approximation du quatrieme ordre,
3. v=0, a et 8 a déterminer pour obtenir une approximation du quatrieme ordre,

4. v, a et B a déterminer pour obtenir une approximation du sixiéme ordre.

Etudier ’évolution de I'erreur par rapport a la solution exacte en fonction de 'intervalle de discrétisation

h et vérifier que I'ordre de convergence correspond aux estimations théoriques.



4 Equation de Korteweg de Vries - Analyse de stabilité linéaire

Les vagues scélérates font partie des trains d’onde constituant I’état de la mer et sont caractérisées par
une longueur d’onde analogue a celle de leurs voisines. Leur spécificité consiste en un profil beaucoup
plus abrubt et une hauteur environ deux fois plus grande, pouvant atteindre 30 metres.

Figure 1: Vagues scélérates.

Des études menées en canal de houle sur des vagues se propageant dans une seule direction ont
montré qu’il peut y avoir jusqu’a 100 fois plus de vagues scélérates que la théorie linéaire ne le prévoit.
La fréquence d’apparition est donc nécessairement liée a des phénomenes non-linéaires. D’apres certaines
hypotheses, la vague scélérate pourrait apparaitre en empruntant de 1’énergie a ses voisines puis devrait
se propager de maniere stable sans se déformer.

Les vagues scélérates pourraient ainsi correspondre a des solutions particulieres d’équations non-
linéaires appelées solitons, c’est-a-dire a des ondes qui se propagent sans que leur forme ne change. La
propagation d’une telle vague pourrait étre décrite par I’équation de Korteweg—de Vries donnée par

ou  Ou ou

Pour chercher une solution de type soliton se déplagant a la vitesse ¢, on suppose que l'onde puisse

s’exprimer comme
u(z,t) = s(x — ct) = s(y). (14)

L’équation de Korteweg—de Vries se réduit ainsi sous la forme de I’équation différentielle ordinaire et

non-linéaire & q
s s
— 6s —c)— =0. 15

La résolution de cette équation permet de trouver la forme du soliton qui se propage a la vitesse ¢

s(y) = gsech2 <\/§y> . (16)

Pour que le soliton puisse effectivement se déplacer sans déformation, il doit étre stable par rapport aux
perturbations inhérentes au milieu marin, comme le vent ou les autres vagues.

1. Nous proposons d’étudier la stabilité linéaire du soliton (23) en fonction de sa vitesse de propaga-
tion. Pour ce faire, nous supposons que la solution de I’équation de Korteweg—de Vries soit issue
de la superposition du soliton s et d’une perturbation u’

u(z,t) = s(y) + eu'(z,t), (17)

ol € est une constante suffisamment petite pour rester dans le cas linéaire. L’évolution de la
perturbation peut ainsi étre décrite par I’équation de Korteweg—de Vries linéarisée autour du soliton
ou' o3 ou’ 0s
— + —— +6s— +6—u =0. 18
ot Oz ox Ox (18)
En admettant une solution a variables séparables et une dépendance temporelle harmonique, on
écrit
o' (z,t) = a(z) exp(At), (19)



ou U et A représentent respectivement les formes et pulsations propres des perturbations. L’équation
(18) se réduit ainsi sous la forme
Foat] o s .

+ 65— + 6—mu =0. (20)

A 55 + 655, 763

Apres discrétisation spatiale, cette équation s’écrit sous la forme d’un probléme aux valeurs propres
généralisé donné par
AMua + A(s)u =0, (21)

permettant de déterminer la stabilité des solitons en fonction de leur vitesse de propagation.



5 Equation de Benjamin-Bona-Mahony - Analyse de stabilité

linéaire

On consideére le méme probleéme qu’au sujet prédédent (section 4) mais en supposant que la propagation

des ondes est gouvernée par ’équation de Benjamin-Bona-Mahony

Ou Ou  Ou_  Fu
ot oz or  oz20t

Dans ce cas, le soliton est donné par la relation

s(y) 3c” sech? (;(CCU - Ct)) 5

1—¢? 1—c2
et ’équation linéarisée en régime harmonique s’écrit

. 0 ou . 0s 0%

(24)



6 Equation des ondes

On aimerait étudier la propagation d’ondes acoustiques a l'intérieur d’'un Cor de Alpes. Pour cela, nous

Figure 2: Cor des Alpes.

supposons que les ondes de pression puissent étre décrites par I’équation de d’Alembert

0%u

W — AV = 0, =€, (25)

ou c représente leur célerité. En admettant que la longueur d’onde longitudinale [ soit beaucoup plus
petite que la longueur caratéristique de l'instrument, nous supposons que la solution de 1’équation de
d’Alembert s’écrive sous la forme

u(@,t) = x, ) k=), (26)

ou 4 représente le mode propre transversal, w sa pulsation, et k son nombre d’onde longitudinal. En
substituant cette relation dans 1’équation de d’Alembert, on obtient

((ck)? —w?) @ — 2V%i =0, (27)

avec V = (0,,0,) 'opérateur laplacien transversal. Apres discrétisation spatiale, cette équation s’écrit
sous la forme d’un probleme aux valeurs propres généralisé donné par

Ad = Ma, A\=k2— (%)2 (28)

1. En supposant des parois infiniment rigides et une section carée de taille L constante, déterminer
analytiquement les modes propres transversaux ainsi que leur pulsation.

2. Déterminer numériquement ces mémes grandeurs et procéder a une étude de convergence des
résultats numériques. En déduire I'ordre de convergence des différents modes propres.

3. Etablir et interpréter la relation de dispersion inverse k(w), avec k € C et w € R. En déduire quels
modes peuvent se propager, et quels modes sont atténués, a travers I'instrument.



