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Laboratoire 111

1 Equation d’advection

On considere 1’équation d’advection

{ Ou—+cOu=0, (x,t)eQxRy,Q=(-1,1], )

u(z,0) = uo(x),
avec c¢ la vitesse d’advection et des conditions aux limites périodiques. La solution exacte est donnée par

u(x,t) = up(x —ct), Vug. (2)

1. La fonction gaussienne est une fonction propre de la transformée de Fourier. Elle resulte donc de
la superposition d’ondes de fréquence voisine (paquet d’onde gaussien), ce qui permet d’étudier le
phénomene de dispersion numérique. Ainsi, en utilisant la condition initiale

uo = exp (—(102)?) 3)

analyser l'influence du parametre de la méthode-theta, du nombre de Courant et du type de
dicrétisation spatiale (différences finies centrés du second ordre ou Upwind du premier ordre) sur
ce phénomene.

2. Que se passe-t-il si on utilise une discrétisation spatiale Upwind du premier ordre, la méthode
d’Euler explicite (§ = 0) et que 'on impose le nombre de Courant égal a 'unité?

3. Répéter ce dernier point avec la condition initiale

up = lim exp (—(10z)). (4)

o—00
En pratique, on choisira ¢ suffisamment grand.

4. Analyser le spectre de valeurs propres issu de 'analyse de stabilité linéaire pour une discrétisation
spatiale aux différences finies centrées du second ordre puis Upwind du premier ordre. Déterminer
la consistance de chaque méthode.

5. Analyser le spectre de valeurs propres issu de 'analyse de stabilité numérique pour les différentes
valeurs caractéristiques de 6 et pour les deux méthodes de discrétisation spatiale considérées.
Déterminer la consistance de chaque combinaison de méthode de discrétisation spatiale et tem-
porelle.



2 Equation de Burgers

On considere ici le trafic routier d’un point de vue macroscopique en étudiant la densité de trafic p(z,t),
¢’est-a-dire le nombre de véhicules présents par unité de longueur. En notant par v(x,t) leur vitesse a

Figure 1: Vue macroscopique du trafic routier.

la position x et au temps ¢, le flux de véhicules s’écrit

¢ = pv. (5)

Le flux de trafic doit vérifier I’équation de conservation de la masse, analogue a celle rencontrée en
mécanique des fluides, donnée par

op 09
E‘F%—f: (6)

ou le terme de forgage f représente les véhicules quittant ou rejoignant la route. La relation entre la
vitesse et la densité de trafic peut étre obtenue par le truchement d’une loi phénoménologique telle que

_o(_P\_K9p
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Le premier terme de cette relation signifie que la vitesse des véhicules atteint la valeur maximale © lorsque
la densité tend vers zéro, alors qu’elle s’annule lorsque la densité atteint son maximum p. Le second
terme signifie que les conducteurs réduisent en moyenne leur vitesse lorsque le trafic se densifie devant
eux. En remplacant la relation (7) dans ’équation de conservation de la masse (6), on obtient 1’équation
d’évolution suivante pour la densité

o ~fiag t(0=20p)5- = f, (8)

avec U = 0/p. L’introduction du changement de variable linéaire u = 9 — 20p permet de se ramener &
I’équation de Burgers

ou 0%u ou

— —k— t+Uu— = s 9

ot Ox? Ox ! )
ou f = —20f. De maniere a étudier I’évolution du trafic dans une situation donnée, on considere le

probléme aux valeurs initiales et aux limites

ou  0%u  Ou
E*H@‘FU@*O, (x,t)GQXR+,Q—(O,2),

u(z,0) = up(z) = sin(rzx),

(10)

avec des conditions aux limites périodiques, ce qui correspond a la situation ou les véhicules roulent en
circuit fermé.

1. En vous basant sur le code implémenté dans le fichier Unsteady_Advection FDM_1D.m utilisé dans
lexercice précédant, implémenter la résolution du probléme (10) dans un code Matlab en utilisant
une discétisation spatiale aux différences finies centrées du second ordre, la méthode de Crank—
Nicolson pour la discrétisation temporelle, et la méthode de Picard pour la résolution de systemes
d’équations non-linéaires.



2. Etudier I’évolution de l’erreur par rapport a la solution exacte en fonction de lintervalle de
discrétisation spatiale et temporel sachant que la solution analytique du probleme (10) est donnée
par la série

S ane ™ Ry sin(nm)
ap+ Y onoy ane~ 5t cos(nwx)’

1 j—
ap, = / exp (_lcos(mc)> cos(nmx) dx.
0
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(11)

u(z,t) = 27k

avec

En déduire ’'ordre spatial et temporel de la méthode et le comparer aux estimations théoriques.

3. Qu’observez-vous en prenant en compte la conditions initiale ug(z) = 1 + sin(7z/2)?



