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Laboratoire III

1 Equation d’advection

On considère l’équation d’advection{
∂tu+ c ∂xu = 0, (x, t) ∈ Ω× R+,Ω = (−1, 1],

u(x, 0) = u0(x),
(1)

avec c la vitesse d’advection et des conditions aux limites périodiques. La solution exacte est donnée par

u(x, t) = u0(x− ct), ∀u0. (2)

1. La fonction gaussienne est une fonction propre de la transformée de Fourier. Elle resulte donc de
la superposition d’ondes de fréquence voisine (paquet d’onde gaussien), ce qui permet d’étudier le
phénomène de dispersion numérique. Ainsi, en utilisant la condition initiale

u0 = exp
(
−(10x)2

)
, (3)

analyser l’influence du paramètre de la méthode-theta, du nombre de Courant et du type de
dicrétisation spatiale (différences finies centrés du second ordre ou Upwind du premier ordre) sur
ce phénomène.

2. Que se passe-t-il si on utilise une discrétisation spatiale Upwind du premier ordre, la méthode
d’Euler explicite (θ = 0) et que l’on impose le nombre de Courant égal à l’unité?

3. Répéter ce dernier point avec la condition initiale

u0 = lim
σ→∞

exp
(
−(10x)2σ

)
. (4)

En pratique, on choisira σ suffisamment grand.

4. Analyser le spectre de valeurs propres issu de l’analyse de stabilité linéaire pour une discrétisation
spatiale aux différences finies centrées du second ordre puis Upwind du premier ordre. Déterminer
la consistance de chaque méthode.

5. Analyser le spectre de valeurs propres issu de l’analyse de stabilité numérique pour les différentes
valeurs caractéristiques de θ et pour les deux méthodes de discrétisation spatiale considérées.
Déterminer la consistance de chaque combinaison de méthode de discrétisation spatiale et tem-
porelle.
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2 Equation de Burgers

On considère ici le trafic routier d’un point de vue macroscopique en étudiant la densité de trafic ρ(x, t),
c’est-à-dire le nombre de véhicules présents par unité de longueur. En notant par v(x, t) leur vitesse à

Figure 1: Vue macroscopique du trafic routier.

la position x et au temps t, le flux de véhicules s’écrit

φ = ρv. (5)

Le flux de trafic doit vérifier l’équation de conservation de la masse, analogue à celle rencontrée en
mécanique des fluides, donnée par

∂ρ

∂t
+
∂φ

∂x
= f, (6)

où le terme de forçage f représente les véhicules quittant ou rejoignant la route. La relation entre la
vitesse et la densité de trafic peut être obtenue par le truchement d’une loi phénoménologique telle que

v = v̂

(
1− ρ

ρ̂

)
− κ

ρ

∂ρ

∂x
. (7)

Le premier terme de cette relation signifie que la vitesse des véhicules atteint la valeur maximale v̂ lorsque
la densité tend vers zéro, alors qu’elle s’annule lorsque la densité atteint son maximum ρ̂. Le second
terme signifie que les conducteurs réduisent en moyenne leur vitesse lorsque le trafic se densifie devant
eux. En remplaçant la relation (7) dans l’équation de conservation de la masse (6), on obtient l’équation
d’évolution suivante pour la densité

∂ρ

∂t
− κ∂

2ρ

∂x2
+ (v̂ − 2ν̂ρ)

∂ρ

∂x
= f, (8)

avec ν̂ = v̂/ρ̂. L’introduction du changement de variable linéaire u = v̂ − 2ν̂ρ permet de se ramener à
l’équation de Burgers

∂u

∂t
− κ∂

2u

∂x2
+ u

∂u

∂x
= f̂ , (9)

où f̂ = −2ν̂f . De manière à étudier l’évolution du trafic dans une situation donnée, on considère le
problème aux valeurs initiales et aux limites

∂u

∂t
− κ∂

2u

∂x2
+ u

∂u

∂x
= 0, (x, t) ∈ Ω× R+,Ω = (0, 2),

u(x, 0) = u0(x) = sin(πx),
(10)

avec des conditions aux limites périodiques, ce qui correspond à la situation où les véhicules roulent en
circuit fermé.

1. En vous basant sur le code implémenté dans le fichier Unsteady Advection FDM 1D.m utilisé dans
l’exercice précédant, implémenter la résolution du problème (10) dans un code Matlab en utilisant
une discétisation spatiale aux différences finies centrées du second ordre, la méthode de Crank–
Nicolson pour la discrétisation temporelle, et la méthode de Picard pour la résolution de systèmes
d’équations non-linéaires.
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2. Etudier l’évolution de l’erreur par rapport à la solution exacte en fonction de l’intervalle de
discrétisation spatiale et temporel sachant que la solution analytique du problème (10) est donnée
par la série

u(x, t) = 2πκ

∑∞
n=1 ane−n

2π2κtn sin(nπx)

a0 +
∑∞
n=1 ane−n2π2κt cos(nπx)

, (11)

avec

an =

∫ 1

0

exp

(
−1− cos(πx)

2πκ

)
cos(nπx) dx.

En déduire l’ordre spatial et temporel de la méthode et le comparer aux estimations théoriques.

3. Qu’observez-vous en prenant en compte la conditions initiale u0(x) = 1 + sin(πx/2)?
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