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Equations de Navier—Stokes

Formulation dimensionnelle

On consideére les équations de Navier—Stokes

I = I 1 R . eeia
N /—/R —~ = 7 N =
p(0v +v - V) = =Vp+uV3v+"pg s
V-u=0 p=Pp

[¥]

En utilisant les variables adimensionnelles, on a
% N pV? = P\ o INANESS PV ~
(T)agv-i-(L) -Vv = (L Vb + 2 Vo + T )9
VY ~
()7
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Equations de Navier—Stokes

Formulations adimensionnelles

® avec le temps d’'advection T = % on obtient

ou le nombre de Reynolds |Re =

Références
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Equations de Navier—Stokes

Niveau de pression

On définit le noyau du gradient
ker(V)={f: Q=R | Vf=0}={const }

Soit (v,p) une solution des équations de Navier-Stokes. Cette solution
n'est pas affectée par toute perturbation de pression p’ € ker(V). En
effet,

p(Ow+v-Vu)==V(p+ p )+uVie+pg
~—
= const

La pression peut ainsi subir des perturbations dans le noyau du gradient
sans affecter la vitesse. Elle est ainsi définie a une constante pres.
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Equations de Navier—Stokes v.5=0

mi -VP+ V%43
Limite de Stokes

A la limite Re — 0, on peut négliger le terme d'advection. On obtient
ainsi les équations de Stokes

pOw—p Vv =—-Vp+pg
V-v=0

Dans le cas stationnaire, elles se réduisent a

—u Vv = —Vp+pg
V-v=0
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Equations de Navier—Stokes Ve —Upi g

.. V- -v=0
Limite de Stokes

ce qui s'écrit explicitement sous la forme
0%v, n 0%v, _ Op L
B 922 oy ) Oz P9z
82vy 820y op
_“(ax2 + oy? __aiy—’—pgy

Ovr vy _
or oy
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Opérateurs de dérivation discrets - Dérivée premiere selon x, schéma centré

® Série de Taylor

Uit1,; = Uiy + % % . + 2—% % . + };—% % . +O(h})
Uic1j = Uiy — % % . %% % o %% % N +0(hy)
e Différence des deux séries
u| Uity —Uiciy  hE 0w L oM
Oz xi; 2h 3! Ox3 xi; *

=0(h2)
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Différences finies

Opérateurs de dérivation discrets - Dérivée premiere selon y, schéma centré

® Série de Taylor

h, Ou h2 9u h Pu .
ij+1 = Uy + — =— Pl + O(h
Ui+ = Uiy + 5 T N O(hy)
h, Ou h2 9u h Pu
Uijo1=U;— 2 e + O(ht
4,j—1 ] 1! ay 21 ay2 xi; 3! ayS i) ( y)
e Différence des deux séries
ul _ Uigr1 — Uiy _hi/ @ +O(h)
dy xi; 2hy 3! oy x5 Y
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Différences finies

Opérateurs de dérivation discrets - Dérivée seconde selon x, schéma centré

® Série de Taylor

hy Ou h2 9%u K2 93u
L =Us 2 22 Zz 27 Zz 27 + O(h4
Verns =Us 9y g o ez, * 30 aan|, T OU)
hy Ou h2 0%u h3 93y
U1, =U;; — — — = —— - = + O(ht
R TR BT TR ) BT Y W ()
® Somme des deux séries
0%u Uit1,; —2U;; + Ui 4 2h926 o'u 4
— = : e T +O(h
Ox? xi; h2 4! Ot xi; (h)

e=0(h3)
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Opérateurs de dérivation discrets - Dérivée seconde selon y, schéma centré

® Série de Taylor

hy Ou h 9%u h 93u 4
Vot =Ua 50 5y ol e, S a0
hy, Ou h2 9u h Pu .
ij—1 = Uiy — — = T g — o A3 +O(h
Uij—1= Ui =7 dy 21 dy2 31 0y |, O(hy)
® Somme des deux séries
2
Pul Uy —2U; + Ugyr 20y 0'u L OhY
Oy? xi; hZ 4' Ayt Y

Xij

e=0(h2)
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a2 a2 o
R . —n ( o d;}) = —3% +rge
Différences finies P )
v v
Discrétisation colocative . P
vy + Yy _
dx dy

En utilisant ces approximations, les équations de Stokes stationnaires

deviennent

u Va,it1,j — 2Vm2,71j +Vaio1,j n Va,ij+1 — 2Vm2,1:j +Vaig-1) _ _Pit1, —Pi-1, + oG

hZ h2 2hy
Vyit1.g —2Vyij + Vi1 | Vyiga1 —2Vyij + Vi Pij41—Pij_
[ Yuitt v.i3 T Vyizt1j , Vit v.is yij=1\ _ _Pijt1 s I
hy h2 2hy
Va,it1,j = Vai=14 | Vyig+l = Vyii-1 _
2hg 2hy

ce qui s'écrit sous la forme matricielle

Av, = _Dxp + Mgz
Av, =-D,p + Mg,
D,v,+Dyv, =0
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et de maniere équivalente

A

D, y

0 D
0 A D
D, 0
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(e} [e]
0000

Mg,
Mg,
P 0

Puis, en définissant I'opérateur gradient discret G = (D, Dy)T, on a

A G
D o

)

v
p

)-(%°)

avec D=GT et v= (v, v,)T
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Différences finies

Pression parasite

On définit le noyau du gradient discret
ker(G) = {f ¢ R’ | Gf = 0} # { const }

Soit (v, p) une solution des équations de Stokes discretes. Cette solution
n'est pas affectée par toute perturbation de pression p’ € ker(G). En

) ()

La pression peut ainsi subir des perturbations dans le noyau du gradient
discret sans affecter la vitesse
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Pression parasite
On considére la perturbation de pression parasite p’ en échiquier telle que

P - +1, 4+ j pair
| =1, i+ jimpair

Pour un noeud x;; pair (+) ou impair (-), on a

P, . —P, .. 1—-1
Pl — _ifby Tamlg g =0, Vi, j
i, 2, oh,
P, =P 1-1
S b ot S Y ek RS =0, VYi,j
17,Y th 2hy ) 1,]

On a ainsi

‘p’ € ker(G), p’ # const
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Discrétisation décalée

Discrétisation colocative Discrétisation décalée
Vitesses et pression exprimées aux mémes noeuds Chaque variable (vg, vy et p) a ses propres noeuds
Xij+1 Pij+1
1
T
Vy i
(6] (@) (@) (@] 0 m]
Xit1,j Xij Xit1,j Pi_1; V] i-1j 1P V., i1 Pii1j
1
L1
Vw‘-%%
(e}
Xij-1 Pij
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{1
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O
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® |a grille décalée permet de supprimer le mode de pression parasite
en échiquier

® || est difficile d'utiliser cette approche pour des géométries
complexes
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Eléments finis

—u V20 + Vp = pg

. . , V-v=0
Formulation intégrale v
Les équations de Stokes stationnaires peuvent s'écrire en termes de
contraintes

=0

—V - (—pI + p(Vv + VoT)) = pg
—_——

=T

V-v=0

Sous forme intégrale, ceci s'écrit
—/ V~o--de:/ pg-wdV, Yw e L*(Q)
Q Q

/V-v-quzO, Vg € L*(Q)
Q
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4 ni Vo=
Eléments finis o = ra
V.-v=0
Formulation faible Jo(V - F)-g+F-VgdV = [,o(F-n)-gdS

En partant de la formulation intégrale en termes de contraintes,
I'intégration par parties donne

/aodeV—/ U~n~wdS:/pg~de, vw € H'(Q)
9} oQ 9}

/q'V~vdV:07 Vg € L*(Q)

Q

Les conditions aux limites naturelles expriment ainsi I'annulation des
contraintes au bord du domaine

o-n=20
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Eléments finis

—u V20 + Vp = pg
. . V- -v=0
Formulation faible

En considérant des conditions aux limites naturelles ou de Dirichlet, on a
/ ,u(V'v—l—V'vT)-deV—/ p-V~de:/ pg-wdV, Ywe H'(Q)
Q Q Q

—/q~V~vdV:O, Vg € L*(Q)
Q

ce qui peut s'écrire sous la forme

A(v,w) +D(p,w) = F(w), Yw < H'(Q)
D(q,v) =0, VYqe L*(Q)



Navier-Stokes Différences finies Eléments finis Découplage v-p Références
o] 0000 o] [e]e] o]

o] [e]e) [e]e) 0000

o] [e]e) [ ]

[e]e] (e]e) 0000

Eléments finis

Discrétisation

On consideére I'approximation de la formulation faible

A(vp, wi) + D(pn, wp) = F(wy), Vw, € W, C H'(Q)
D(qn,vn) =0, Vg, € Qn C L*(Q)

avec la méthode de Galerkin, c'est-a-dire avec

ny np
Vk,h = ka,ﬂ’gv)(ﬂ’?) Ph = ijf?;p) ()
=1 =1

Wk, = Zwk,id)z('v)(m) qn = Zqz‘¢£p) ()
=1 =1
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Eléments finis

Pression parasite

En analysant les degrés polynomiaux de chaque terme, on a

Ny —1 "
e v
~/Q

np Ny
;L(V’U}L + V’UE) -Vwy, dV—/ pr -V -wy dV = / ogr - wp dV
Q""" Q>——

(ny—1)2 np(ny—1) n2

ny—1 ny—1

» Ny—1

np(ny—1)
Pour éviter |'apparition de modes de pression parasites, on choisit
Ny =Ny — 1

On assure ainsi la compatibilité des degrés polynomiaux pour tous les
termes.
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Eléments finis

Pression parasite

Elément fini mixte P2-P1

Elément fini Q1-Q1 Elément fini mixte Q2-Q1

[ : pression, X : vitesses
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Pression parasite
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présence de modes de pression parasites

Références
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aucun mode de pression parasite

Eléments finis mixtes Q2-Q1
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® Les éléments finis vérifiant la condition n, = n, — 1 permettent de

supprimer le mode de pression parasite

® On peut naturellement utiliser cette approche pour des géométries

complexes
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Découplage vitesse-pression Av+Gp = Mg

Dv =0
Méthode directe d'Uzawa

En multipliant les équations de quantité de mouvement par DA~!, on
obtient une équation pour la pression

=1

—~
DA 'Av+DA 'Gp=DA'Mg
—_— S—— N 2

=0

S =v*
On peut écrire ces équations sous la forme triangulaire supérieure

A G 0 v Mg
0 S -D P = 0
0 O A v* Mg
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7/
Découplage v- A G o)\ /[v Mg
p g p 0 S -D P = o]
, . , o 0 A v* Mg
Méthode directe d'Uzawa

La substitution inverse pour ce systeme donne la méthode d'Uzawa

Av* = Mg
Sp = Dv*
Av =Mg - Gp

avec |'opérateur d'Uzawa donné par

e Méthode trop couteuse car elle requiert le calcul de A~!

® Méthode non-utilisée en pratique mais qui sert a la compréhension
d’'autres méthodes utilisées dans le cas instationnaire
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Découplage v-p L=~V g

Solveur Itératif de Poisson (P1S0) Vov=o

Sous forme indicielle, les équations de quantité de mouvement s'écrivent

L P op
“axkaxk_ ox; P9

En prenant la divergence, on obtient

e dm 0 Pw B ow
({91’181'1 p@wi o Maxi axkaxk o H@xkaxk 83:1 -
~—~
V.-v=0
c'est-a-dire
V2=V (pg)]

dont la résolution requiert I'introduction de conditions aux limites.
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7/
Découplage v-p MY~
. . . V-v=0
Solveur ltératif de Poisson (PISO)

En passant sous forme intégrale, on obtient la relation

V'Vp-de:/V'(pg)wde
QHf—’V Q
= 2p

dont l'intégration par parties donne la forme faible

f/Vp~deV+ Vp-n'wdS:/V(pg)ﬂde
Q Q

o0

En projectant I'équation de quantité de mouvement selon n, il vient

\Vp‘n:(uV2v+pg)~n‘
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Découplage vitesse-pression
Solveur ltératif de Poisson (PI1S0)

Etant donné (v, p(), résoudre itérativement

1. I'équation de Poisson pour p(k+1)

V2plktD) = V-(pg) sur €2
V) .n = (uVZ® +pg)-n sur 09
2. puis I'équation de Poisson pour v(*+1)

—p V2t = _gpk+) 4 g sur Q
C.L. pour v*+1) sur OQ
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Découplage vitesse-pression
Solveur ltératif de Poisson (PI1S0)

Les critéres d'arrét de |'aglorithme itératif étant

ou M est un nombre d’itérations maximal fixé

® Nombre d'itérations

e Convergence
/ (1 V20 — Vi) + pgn) - wn dV <7 Yy,
Q

/V-’v,(f)-qthST Yan
Q

ou 7 est une tolérance fixée
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