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Méthode directe d’Uzawa
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Equations de Navier–Stokes
Formulation dimensionnelle

On considère les équations de Navier–Stokes

ρ(

[ ρVT ]︷︸︸︷
∂tv +

[
ρV2

L

]︷ ︸︸ ︷
v ·∇v) =

[PL ]︷ ︸︸ ︷
−∇p+

[µV
L2 ]︷ ︸︸ ︷

µ∇2v+

[ ρVT ]︷︸︸︷
ρg

∇ · v︸ ︷︷ ︸
[VL ]

= 0

x = L x̂

t = T t̂

v = V v̂

p = P p̂

En utilisant les variables adimensionnelles, on a(
ρV

T

)
∂t̂v̂ +

(
ρV2

L

)
v̂ · ∇̂v̂ = −

(
P

L

)
∇̂p̂+

(
µV

L2

)
∇̂2v̂ +

(
ρV

T

)
ĝ(

V

L

)
∇̂ · v̂ = 0
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Equations de Navier–Stokes
Formulations adimensionnelles

• avec le temps d’advection T = L
V , on obtient

∂t̂v̂ + v̂ · ∇̂v̂ = −∇̂p̂+Re−1∇̂2v̂ + ĝ

∇̂ · v̂ = 0

• avec le temps de diffusion T = ρL2

µ , on obtient

∂t̂v̂ +Re v̂ · ∇̂v̂ = −∇̂p̂+ ∇̂2v̂ + ĝ

∇̂ · v̂ = 0

où le nombre de Reynolds Re =
ρVL

µ
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Equations de Navier–Stokes
Niveau de pression

On définit le noyau du gradient

ker(∇) = {f : Ω→ R |∇f = 0} = { const }

Soit (v, p) une solution des équations de Navier–Stokes. Cette solution
n’est pas affectée par toute perturbation de pression p′ ∈ ker(∇). En
effet,

ρ(∂tv + v ·∇v) = −∇(p+ p′︸︷︷︸
= const

) + µ∇2v + ρg

La pression peut ainsi subir des perturbations dans le noyau du gradient
sans affecter la vitesse. Elle est ainsi définie à une constante près.
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Equations de Navier–Stokes
Limite de Stokes

∇ · v̂ = 0

∂t̂v̂ + Re v̂ · ∇v̂ = −∇p̂ + ∇2v̂ + ĝ

A la limite Re→ 0, on peut négliger le terme d’advection. On obtient
ainsi les équations de Stokes

ρ ∂tv − µ∇2v = −∇p+ ρg

∇ · v = 0

Dans le cas stationnaire, elles se réduisent à

−µ∇2v = −∇p+ ρg

∇ · v = 0
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Equations de Navier–Stokes
Limite de Stokes

−µ ∇2v = −∇p + ρg

∇ · v = 0

ce qui s’écrit explicitement sous la forme

−µ
(
∂2vx
∂x2

+
∂2vx
∂y2

)
= −∂p

∂x
+ ρgx

−µ
(
∂2vy
∂x2

+
∂2vy
∂y2

)
= −∂p

∂y
+ ρgy

∂vx
∂x

+
∂vy
∂y

= 0
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Différences finies
Opérateurs de dérivation discrets - Dérivée première selon x, schéma centré

• Série de Taylor

Ui+1,j = Uij +
hx
1!

∂u

∂x

∣∣∣∣
xij

+
h2
x

2!

∂2u

∂x2

∣∣∣∣
xij

+
h3
x

3!

∂3u

∂x3

∣∣∣∣
xij

±O(h4
x)

Ui−1,j = Uij −
hx
1!

∂u

∂x

∣∣∣∣
xij

+
h2
x

2!

∂2u

∂x2

∣∣∣∣
xij

− h3
x

3!

∂3u

∂x3

∣∣∣∣
xij

±O(h4
x)

• Différence des deux séries

∂u

∂x

∣∣∣∣
xij

=
Ui+1,j −Ui−1,j

2hx
−h

2
x

3!

∂3u

∂x3

∣∣∣∣
xij

±O(h4
x)︸ ︷︷ ︸

ε=O(h2
x)
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Différences finies
Opérateurs de dérivation discrets - Dérivée première selon y, schéma centré

• Série de Taylor

Ui,j+1 = Uij +
hy
1!

∂u

∂y

∣∣∣∣
xij

+
h2
y

2!

∂2u

∂y2

∣∣∣∣
xij

+
h3
y

3!

∂3u

∂y3

∣∣∣∣
xij

±O(h4
y)

Ui,j−1 = Uij −
hy
1!

∂u

∂y

∣∣∣∣
xij

+
h2
y

2!

∂2u

∂y2

∣∣∣∣
xij

−
h3
y

3!

∂3u

∂y3

∣∣∣∣
xij

±O(h4
y)

• Différence des deux séries

∂u

∂y

∣∣∣∣
xij

=
Ui,j+1 −Ui,j−1

2hy
−
h2
y

3!

∂3u

∂y3

∣∣∣∣
xij

±O(h4
y)︸ ︷︷ ︸

ε=O(h2
y)
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Différences finies
Opérateurs de dérivation discrets - Dérivée seconde selon x, schéma centré

• Série de Taylor

Ui+1,j = Uij +
hx
1!

∂u

∂x

∣∣∣∣
xij

+
h2
x

2!

∂2u

∂x2

∣∣∣∣
xij

+
h3
x

3!

∂3u

∂x3

∣∣∣∣
xij

±O(h4
x)

Ui−1,j = Uij −
hx
1!

∂u

∂x

∣∣∣∣
xij

+
h2
x

2!

∂2u

∂x2

∣∣∣∣
xij

− h3
x

3!

∂3u

∂x3

∣∣∣∣
xij

±O(h4
x)

• Somme des deux séries

∂2u

∂x2

∣∣∣∣
xij

=
Ui+1,j − 2Uij +Ui−1,j

h2
x

−2h2
x

4!

∂4u

∂x4

∣∣∣∣
xij

±O(h4
x)︸ ︷︷ ︸

ε=O(h2
x)
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Différences finies
Opérateurs de dérivation discrets - Dérivée seconde selon y, schéma centré

• Série de Taylor

Ui,j+1 = Uij +
hy
1!

∂u

∂y

∣∣∣∣
xij

+
h2
y

2!

∂2u

∂y2

∣∣∣∣
xij

+
h3
y

3!

∂3u

∂y3

∣∣∣∣
xij

±O(h4
y)

Ui,j−1 = Uij −
hy
1!

∂u

∂y

∣∣∣∣
xij

+
h2
y

2!

∂2u

∂y2

∣∣∣∣
xij

−
h3
y

3!

∂3u

∂y3

∣∣∣∣
xij

±O(h4
y)

• Somme des deux séries

∂2u

∂y2

∣∣∣∣
xij

=
Ui,j+1 − 2Uij +Ui,j−1

h2
y

−
2h2

y

4!

∂4u

∂y4

∣∣∣∣
xij

±O(h4
y)︸ ︷︷ ︸

ε=O(h2
y)
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Différences finies
Discrétisation colocative

−µ
(
∂2vx
∂x2

+ ∂2vx
∂y2

)
= − ∂p

∂x
+ ρgx

−µ
(
∂2vy

∂x2
+
∂2vy

∂y2

)
= − ∂p

∂y
+ ρgy

∂vx
∂x

+
∂vy
∂y

= 0

En utilisant ces approximations, les équations de Stokes stationnaires
deviennent

−µ
(

Vx,i+1,j − 2Vx,ij + Vx,i−1,j

h2
x

+
Vx,i,j+1 − 2Vx,ij + Vx,i,j−1

h2
y

)
= −

Pi+1,j − Pi−1,j

2hx
+ ρGx,ij

−µ
(

Vy,i+1,j − 2Vy,ij + Vy,i−1,j

h2
y

+
Vy,i,j+1 − 2Vy,ij + Vy,i,j−1

h2
y

)
= −

Pi,j+1 − Pi,j−1

2hy
+ ρGy,ij

Vx,i+1,j − Vx,i−1,j

2hx
+

Vy,i,j+1 − Vy,i,j−1

2hy
= 0

ce qui s’écrit sous la forme matricielle

Avx = −Dxp + Mgx

Avy = −Dyp + Mgy

Dxvx + Dyvy = 0
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Différences finies
Discrétisation colocative

−µ
(
∂2vx
∂x2

+ ∂2vx
∂y2

)
= − ∂p

∂x
+ ρgx

−µ
(
∂2vy

∂x2
+
∂2vy

∂y2

)
= − ∂p

∂y
+ ρgy

∂vx
∂x

+
∂vy
∂y

= 0

et de manière équivalente A 0 Dx

0 A Dy

Dx Dy 0

 vx
vy
p

 =

 Mgx
Mgy

0


Puis, en définissant l’opérateur gradient discret G = (Dx Dy)

T, on a(
A G
D 0

)(
v
p

)
=

(
Mg
0

)
avec D = GT et v = (vx vy)

T
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Différences finies
Pression parasite

On définit le noyau du gradient discret

ker(G) = {f ∈ Rp | Gf = 0} 6= { const }

Soit (v,p) une solution des équations de Stokes discrètes. Cette solution
n’est pas affectée par toute perturbation de pression p′ ∈ ker(G). En
effet, (

A G
D 0

)(
v

p + p′

)
=

(
Mg
0

)
La pression peut ainsi subir des perturbations dans le noyau du gradient
discret sans affecter la vitesse
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Différences finies
Pression parasite

On considère la perturbation de pression parasite p′ en échiquier telle que

P′ij =

{
+1, i+ j pair
−1, i+ j impair

Pour un noeud xij pair (+) ou impair (-), on a

P′ij,x =
P′i+1,j − P′i−1,j

2hx
= ±1− 1

2hx
= 0, ∀i, j

P′ij,y =
P′i,j+1 − P′i,j−1

2hy
= ±1− 1

2hy
= 0, ∀i, j

On a ainsi
p′ ∈ ker(G), p′ 6= const
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Différences finies
Discrétisation décalée

Discrétisation colocative
Vitesses et pression exprimées aux mêmes noeuds

Discrétisation décalée
Chaque variable (vx, vy et p) a ses propres noeuds
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Différences finies
Discrétisation décalée

• La grille décalée permet de supprimer le mode de pression parasite
en échiquier

• Il est difficile d’utiliser cette approche pour des géométries
complexes
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Eléments finis
Formulation intégrale

−µ ∇2v + ∇p = ρg

∇ · v = 0

Les équations de Stokes stationnaires peuvent s’écrire en termes de
contraintes

−∇ · (

= σ︷ ︸︸ ︷
−pI + µ(∇v +∇vT)︸ ︷︷ ︸

= τ

) = ρg

∇ · v = 0

Sous forme intégrale, ceci s’écrit

−
∫

Ω

∇ · σ ·w dV =

∫
Ω

ρg ·w dV, ∀w ∈ L2(Ω)∫
Ω

∇ · v · q dV = 0, ∀q ∈ L2(Ω)
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Eléments finis
Formulation faible

−∇ · σ = ρg

∇ · v = 0∫
Ω(∇ ·F ) · g+F ·∇g dV =

∫
∂Ω(F ·n) · g dS

En partant de la formulation intégrale en termes de contraintes,
l’intégration par parties donne∫

Ω

σ ·∇w dV −
∫
∂Ω

σ · n ·w dS =

∫
Ω

ρg ·w dV, ∀w ∈ H1(Ω)∫
Ω

q ·∇ · v dV = 0, ∀q ∈ L2(Ω)

Les conditions aux limites naturelles expriment ainsi l’annulation des
contraintes au bord du domaine

σ · n = 0
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Eléments finis
Formulation faible

−µ ∇2v + ∇p = ρg

∇ · v = 0

En considérant des conditions aux limites naturelles ou de Dirichlet, on a∫
Ω

µ(∇v +∇vT) ·∇w dV−
∫

Ω

p ·∇ ·w dV =

∫
Ω

ρg ·w dV, ∀w ∈ H1(Ω)

−
∫

Ω

q ·∇ · v dV = 0, ∀q ∈ L2(Ω)

ce qui peut s’écrire sous la forme

A(v,w) +D(p,w) = F(w), ∀w ∈ H1(Ω)

D(q,v) = 0, ∀q ∈ L2(Ω)
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Eléments finis
Discrétisation

On considère l’approximation de la formulation faible

A(vh,wh) +D(ph,wh) = F(wh), ∀wh ∈Wh ⊂ H1(Ω)

D(qh,vh) = 0, ∀qh ∈ Qh ⊂ L2(Ω)

avec la méthode de Galerkin, c’est-à-dire avec

vk,h =

nv∑
j=1

vk,jφ
(v)
j (x) ph =

np∑
j=1

pjφ
(p)
j (x)

wk,h =

nv∑
i=1

wk,iφ
(v)
i (x) qh =

np∑
i=1

qiφ
(p)
i (x)
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Eléments finis
Pression parasite

En analysant les degrés polynomiaux de chaque terme, on a

∫
Ω

nv−1︷ ︸︸ ︷
µ(∇vh +∇vT

h ) ·
nv−1︷ ︸︸ ︷
∇wh︸ ︷︷ ︸

(nv−1)2

dV−
∫

Ω

np︷︸︸︷
ph ·

nv−1︷ ︸︸ ︷
∇ ·wh︸ ︷︷ ︸

np(nv−1)

dV =

∫
Ω

nv︷︸︸︷
ρgh ·

nv︷︸︸︷
wh︸ ︷︷ ︸

n2
v

dV

−
∫

Ω

np︷︸︸︷
qh ·

nv−1︷ ︸︸ ︷
∇ · vh︸ ︷︷ ︸

np(nv−1)

dV = 0

Pour éviter l’apparition de modes de pression parasites, on choisit

np = nv − 1

On assure ainsi la compatibilité des degrés polynomiaux pour tous les
termes.
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Eléments finis
Pression parasite

Elément fini P1-P1 Elément fini mixte P2-P1

Elément fini Q1-Q1 Elément fini mixte Q2-Q1

� : pression, × : vitesses
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Eléments finis
Pression parasite

Eléments finis Q1-Q1
présence de modes de pression parasites

aucun mode de pression parasite

Eléments finis mixtes Q2-Q1
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Eléments finis
Pression parasite

• Les éléments finis vérifiant la condition np = nv − 1 permettent de
supprimer le mode de pression parasite

• On peut naturellement utiliser cette approche pour des géométries
complexes
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Découplage vitesse-pression
Méthode directe d’Uzawa

Av + Gp = Mg

Dv = 0

En multipliant les équations de quantité de mouvement par DA−1, on
obtient une équation pour la pression

D

= I︷ ︸︸ ︷
A−1A v︸ ︷︷ ︸

= 0

+DA−1G︸ ︷︷ ︸
≡ S

p = D A−1Mg︸ ︷︷ ︸
≡ v∗

On peut écrire ces équations sous la forme triangulaire supérieure A G 0
0 S −D
0 0 A

 v
p
v∗

 =

 Mg
0

Mg


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Découplage v-p
Méthode directe d’Uzawa

 A G 0
0 S −D
0 0 A

 v
p
v∗

 =

 Mg
0

Mg



La substitution inverse pour ce système donne la méthode d’Uzawa

Av∗ = Mg

Sp = Dv∗

Av = Mg −Gp

avec l’opérateur d’Uzawa donné par

S = DA−1G

• Méthode trop couteuse car elle requiert le calcul de A−1

• Méthode non-utilisée en pratique mais qui sert à la compréhension
d’autres méthodes utilisées dans le cas instationnaire
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Découplage v-p
Solveur Itératif de Poisson (PISo)

−µ ∇2v = −∇p + ρg

∇ · v = 0

Sous forme indicielle, les équations de quantité de mouvement s’écrivent

−µ ∂2vi
∂xk∂xk

= − ∂p

∂xi
+ ρgi

En prenant la divergence, on obtient

− ∂2p

∂xi∂xi
+ ρ

∂gi
∂xi

= −µ ∂

∂xi

∂2vi
∂xk∂xk

= −µ ∂2

∂xk∂xk

∂vi
∂xi︸︷︷︸

∇·v=0

= 0

c’est-à-dire

∇2p = ∇ · (ρg)

dont la résolution requiert l’introduction de conditions aux limites.
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Découplage v-p
Solveur Itératif de Poisson (PISo)

−µ ∇2v = −∇p + ρg

∇ · v = 0

En passant sous forme intégrale, on obtient la relation∫
Ω

∇ ·∇p︸ ︷︷ ︸
= ∇2p

·w dV =

∫
Ω

∇ · (ρg) · w dV

dont l’intégration par parties donne la forme faible

−
∫

Ω

∇p ·∇w dV +

∫
∂Ω

∇p · n · w dS =

∫
Ω

∇ · (ρg) ·w dV

En projectant l’équation de quantité de mouvement selon n, il vient

∇p · n = (µ∇2v + ρg) · n
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Découplage vitesse-pression
Solveur Itératif de Poisson (PISo)

Etant donné (v(0), p(0)), résoudre itérativement

1. l’équation de Poisson pour p(k+1){
∇2p(k+1) = ∇ · (ρg) sur Ω

∇p(k+1) · n = (µ∇2v(k) + ρg) · n sur ∂Ω

2. puis l’équation de Poisson pour v(k+1){
−µ∇2v(k+1) = −∇p(k+1) + ρg sur Ω

C.L. pour v(k+1) sur ∂Ω
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Découplage vitesse-pression
Solveur Itératif de Poisson (PISo)

Les critères d’arrêt de l’aglorithme itératif étant

• Nombre d’itérations
k ≥ M

où M est un nombre d’itérations maximal fixé

• Convergence∫
Ω

(µ∇2v
(k)
h −∇p

(k)
h + ρgh) ·wh dV ≤ τ ∀wh∫
Ω

∇ · v(k)
h · qh dV ≤ τ ∀qh

où τ est une tolérance fixée
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