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Références
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Equations de Navier–Stokes
Formulations adimensionnelles

• Temps d’advection T = L
V ,

∂t̂v̂ + v̂ · ∇̂v̂ = −∇̂p̂+ Re−1∇̂2v̂ + ĝ

∇̂ · v̂ = 0

• Temps de diffusion T = ρL2

µ ,

∂t̂v̂ + Re v̂ · ∇̂v̂ = −∇̂p̂+ ∇̂2v̂ + ĝ

∇̂ · v̂ = 0

où le nombre de Reynolds Re =
ρVL

µ
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Discrétisation spatiale
Formulation forte

Pour se concentrer sur l’aspect non-linéaire des équations de
Navier–Stokes, on considère dans un premier temps l’équation de Burgers

∂u

∂t
− ν ∂

2u

∂x2
+ u

∂u

∂x
= f, Ω = [a,b]

u(x, t0) = u0(x)

avec des conditions aux limites périodiques et la solution

u(x, t) ∈ C2(Ω)
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Discrétisation spatiale
Formulation intégrale

La formulation intégrale est obtenue par produit scalaire par une fonction
test (pondération). On obtient ainsi∫

Ω

(
∂u

∂t
− ν ∂

2u

∂x2
+ u

∂u

∂x

)
· v dV =

∫
Ω

f · v dx, ∀v ∈ L2(Ω)
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Discrétisation spatiale
Différences finies

En utilisant les fonctions test de la méthode des différences finies, il vient∫
Ω

(
∂u

∂t
− ν ∂

2u

∂x2
+ u

∂u

∂x

)
· δ(xi) dx =

∫
Ω

f · δ(xi) dx, ∀i

soit
∂u

∂t

∣∣∣∣
xi

− ν
∂2u

∂x2

∣∣∣∣
xi

+ u
∂u

∂x

∣∣∣∣
xi

= fi, ∀i

Avec une approximation centrée du second ordre, on obtient les
équations semi-discrètes sous forme indicielle

u̇i − ν
ui+1 − 2ui + ui−1

h2
+ ui

ui+1 − ui−1

2h
= fi, ∀i
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Discrétisation spatiale
Différences finies

et sous forme matricielle, on a

Mu̇ + A(u)u = Mf

où la matrice de masse M = I, et la matrice de discrétisation circulaire
et tridiagonale

A(u) = −
ν

h2
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Discrétisation temporelle
Méthode-θ

Pour la discrétisation temporelle, on écrit le système sous la forme

Mu̇ = Mf −A(u)u = F(u)

Par exemple, en utilisant la méthode-theta, il vient

(Mu̇)t(n) '
Mũ(n+1) −Mũ(n)

∆t
= (1− θ)F(ũ(n)) + θF(ũ(n+1))

étant donné que dans ce cas particulier

M(n) = M = const
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Discrétisation temporelle
Méthode-θ

En isolant les termes inconnus à gauche, on obtient le système
d’équations algébriques

H(ũ(n+1))ũ(n+1) = R(ũ(n))ũ(n) + (1− θ)Mf (n) + θMf (n+1)

où les matrices H et R sont données par

H(u) =
M

∆t
+ θA(u),

R(u) =
M

∆t
+ (θ − 1)A(u)

Pour chaque pas de temps, on doit résoudre un système d’équations
non-linéaires de la forme

A(x)x = b
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Systèmes d’équations non-linéaires
Définition

On considère le système de p équations à p inconnues de la forme

p∑
j=1

Aij({xk})xj = bi, i, k = 1, . . . ,p

avec les coefficients bi constants. On peut écrire ce système sous la forme

A(x)x = b

A ∈ Rp×p

x, b ∈ Rp
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Systèmes non-linéaires
Méthode itérative de Picard

A(x)x = b

La méthode de Picard est définie par

x(0) donné

A(x(k−1)) x(k) = b

En définissant le résidu à l’itération k − 1

r(x(k−1)) = +A(x(k−1)) x(k−1) − b

= +A(x(k−1)) x(k−1) −A(x(k−1)) x(k)

= −A(x(k−1)) δx(k)

avec l’incrément
δx(k) = x(k) − x(k−1)
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Systèmes non-linéaires
Méthode itérative de Picard

A(x(k−1)) x(k) = b

r(x(k−1)) = A(x(k−1)) x(k−1) − b

δx(k) = x(k) − x(k−1)

on peut exprimer la méthode de la manière suivante

x(0) donné

A(x(k−1)) δx(k) = −r(x(k−1))

x(k) = x(k−1) + δx(k)

où la seconde étape est la résolution d’un système d’équations linéaires
permettant de déterminer l’incrément.
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Systèmes non-linéaires
Méthode itérative de Picard

A(x(k−1)) x(k) = b

r(x(k−1)) = A(x(k−1)) x(k−1) − b
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Systèmes non-linéaires
Méthode itérative de Newton

r(x(k−1)) = A(x(k−1)) x(k−1) − b

δx(k) = x(k) − x(k−1)

Pour la méthode de Newton, on écrit le résidu à l’itération k sous la
forme

r(x(k)) = r(x(k−1) + δx(k))

où l’incrément δx(k) est à déterminer. En utilisant un développement de
Taylor au premier ordre, on obtient l’approximation

r(x(k)) ' r(x(k−1)) +
∂r(x)

∂x

∣∣∣∣
x(k−1)︸ ︷︷ ︸

L(x(k−1))

δx(k) = 0

avec L la matrice jacobienne. Ceci est un système d’équations linéaires
permettant de déterminer l’incrément.
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Systèmes non-linéaires
Méthode itérative de Newton

A(x(k−1)) x(k) = b

r(x(k−1)) = A(x(k−1)) x(k−1) − b

r(x(k)) ' r(x(k−1)) +
∂r(x)
∂x

∣∣∣
x(k−1)

δx(k) = 0
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Systèmes non-linéaires
Méthode itérative de Newton

r(x(k−1)) = A(x(k−1)) x(k−1) − b

r(x(k−1)) + L(x(k−1))δx(k) = 0

On peut donc définir la méthode de Newton par l’algorithme

x(0) donné

L(x(k−1))δx(k) = −r(x(k−1))

x(k) = x(k−1) + δx(k)

avec la matrice jacobienne

Lij(x
(k−1)) =

∂ri
∂xj

∣∣∣∣
x(k−1)

obtenue par discrétisation de l’opérateur continu linéarisé.
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Systèmes non-linéaires
Méthode itérative de Newton avec relaxation

r(x(k−1)) = A(x(k−1)) x(k−1) − b

x(k) = x(k−1) + δx(k)

Pour améliorer la robustesse de la méthode, on peut relaxer les itérations

x(0) donné

L(x(k−1))δx(k) = −r(x(k−1)), k ≥ 0

x(k) = x(k−1) + λ(k)δx(k), λ(k) ∈ ]0, 1]

où le paramètre λ(k) est déterminé de telle sorte que

|| r(x(k−1) + λ(k)δx(k)) || < || r(x(k−1)) ||

On peut procéder de manière analogue pour la méthode de Picard.
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Systèmes d’équations non-linéaires
Critères d’arrrêt

• Nombre d’itérations
k ≥ M

où M est un nombre d’itérations maximal fixé

• Convergence
||r(x(k))||
||f ||

≤ τ

où τ est une tolérance fixée
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