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Références
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Interpolation
Cas mono-dimensionnel

• Base d’interpolation

B = {φ1, φ2, . . . , φp, . . .}

• Expression dans la base

u(x, t)︸ ︷︷ ︸
esp. physique

=

p∑
j=1

esp. modal︷ ︸︸ ︷
uj(t) φj(x) + τ(x, t,p)︸ ︷︷ ︸

troncature à l′ordre p
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Interpolation
Cas mono-dimensionnel

u(x, t) =
∑p
j=1 uj(t)φj(x) + τ(x, t, p)

• Approximation
Troncature de la série

u(x, t) ' uh(x, t) =

p∑
j=1

uj(t)φj(x)

• Convergence
lim

p→∞
τ(x, t,p) = 0,

c’est-à-dire
lim

p→∞
u(x, t)− uh(x, t) = 0
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Interpolation
Cas mono-dimensionnel

uh(x, t) =
∑p
j=1 uj(t)φj(x)

• Noeuds de collocation

X = {x1, x2, . . . , xp}, xi ∈ Ω

• Valeurs nodales

esp. nodal︷︸︸︷
ui(t) = uh(xi, t) =

p∑
j=1

esp. modal︷ ︸︸ ︷
uj(t) φj(xi)

u︸︷︷︸
nodal

= Φ u︸︷︷︸
modal

, [Φ]ij = φj(xi)

• Opérateur de transformation
espace nodal↔ espace modal

u = Φ−1u ≡ Φu
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Interpolation
Cas mono-dimensionnel

uh(x, t) =
∑p
j=1 uj(t)φj(x)

• Approximation

∂xuh(x, t) =

p∑
j=1

uj(t) dxφj(x)

• Valeurs nodales

ui,x(t) = ∂xuh(x, t)|x=xi =

p∑
j=1

uj(t) dxφj |x=xi

u,x = Φ,xu, [Φ,x]ij = dxφj |x=xi
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Interpolation
Cas mono-dimensionnel

u,x = Φ,xu

u = Φ−1u ≡ Φu

• Opérateurs nodaux et modaux

u,x = D u = Φ,xu = Φ,xΦ u

u,x = D u = ΦΦ,xu

• Relations entre opérateurs nodaux et modaux
Valables pour un opérateur discret quelconque

D = Φ,xΦ =

= I︷︸︸︷
ΦΦ Φ,xΦ = Φ D Φ

D = ΦΦ,x = ΦΦ,x ΦΦ︸︷︷︸
= I

= Φ D Φ
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Bases
Base modale de Chebyshev

ui(t) =
∑p
j=1 uj(t)φj(xi)

u = Φu

D = Φ,xΦ

• Base

φ1(x) = 1, φ2(x) = x

φj+1(x) = 2xφj(x)− φj−1(x)

• Noeuds de collocation

X = {xi|x+cos(π(i−1)
p−1 ) = 0}, i = 1, . . . ,p

• Conséquence

Φ 6= I → u 6= u
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Opérateurs de dérivation
Dérivée première - schéma centré

• Série de Taylor

ui+1 = ui +
h

1!

∂u

∂x

∣∣∣∣
xi

+
h2

2!

∂2u

∂x2

∣∣∣∣
xi

+
h3

3!

∂3u

∂x3

∣∣∣∣
xi

±O(h4)

ui−1 = ui −
h

1!

∂u

∂x

∣∣∣∣
xi

+
h2

2!

∂2u

∂x2

∣∣∣∣
xi

− h3

3!

∂3u

∂x3

∣∣∣∣
xi

±O(h4)

• Différence des deux séries

∂u

∂x

∣∣∣∣
xi

=
ui+1 − ui−1

2h
−h

2

3!

∂3u

∂x3

∣∣∣∣
xi

±O(h4)︸ ︷︷ ︸
ε=O(h2)

• Approximation du second ordre
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Opérateurs de dérivation
Dérivée première - formulations matricielles

u,x = Du

• Schéma progressif

∂u

∂x

∣∣∣∣
xi

=
ui+1 − ui

h
±O(h) D

+
=

1

h


−1 +1

−1 +1
−1 +1

−1 +1
?



• Schéma rétrograde

∂u

∂x

∣∣∣∣
xi

=
ui − ui−1

h
±O(h) D

−
=

1

h


?
−1 +1

−1 +1
−1 +1

−1 +1



• Schéma centré

∂u

∂x

∣∣∣∣
xi

=
ui+1 − ui−1

2h
±O(h

2
) D

◦
=

1

2h


? ?
−1 0 +1

−1 0 +1
−1 0 +1

? ?


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Opérateurs de dérivation
Méthode générale

u(x, t) '
∑r−1
n=0

(x−xi)
n

n!
∂nu
∂xn

∣∣∣
x=xi

• Pour approximer une dérivée d’ordre n,

• avec un support1 de r points,

• il faut satisfaire
r > n

• et utiliser r développements de Taylor à r termes.

1en anglais stencil



Interpolation Différences finies classiques Différences finies compactes Epilogue

Opérateurs de dérivation
Méthode générale

• Ordre de dérivation maximal calculable

nmax = r− 1

• Ordre de précision pour la dérivée d’ordre n (schéma non-centré)

ε = O(hr−n)

• Ordre de précision pour la dérivée d’ordre n (schéma centré)

ε = O(hr−n+1), n pair

ε = O(hr−n), n impair
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Différences finies compactes
Approximation

Différences finies classiques. L’augmentation de l’ordre est uniquement
obtenue par agrandissement du stencil. La dérivation est toujours
explicite

u(1) = Du(0)

Différences finies compactes. L’augmentation de l’ordre est obtenue
par agrandissement du stencil et par dérivation implicite

αu(1) = βu(0)

Il faut donc résoudre un système d’équations linéaires pour appliquer une
dérivée ou calculer la matrice de dérivation

D = α−1β
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Différences finies compactes
Schéma du 6e ordre

On note la dérivée n-ième de u par rapport à x, évaluée au noeud i et au
pas de temps k

u
(n)
i =

∂nu

∂xn

∣∣∣∣
xi,tk

et on considère une approximation aux différences finies compactes de la
forme

αu
(1)
i+1 + u

(1)
i + αu

(1)
i−1 '

β

2h
(u

(0)
i+1 − u

(0)
i−1) +

γ

4h
(u

(0)
i+2 − u

(0)
i−2)

• Etant donné que le stencil est centré et de 5 points, le schéma aux
différences finies classiques correspondant (α = 0) est d’ordre 4.

• Le schéma compacte (α 6= 0) n’est utile que s’il conduit à une
approximation qui est au moins d’ordre 5.
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DFC
6e ordre

αu
(1)
i+1 + u

(1)
i + αu

(1)
i−1 '

β
2h

(u
(0)
i+1 − u

(0)
i−1) + γ

4h
(u

(0)
i+2 − u

(0)
i−2)

L’erreur de troncature liée à cette approximation s’écrit

τ = αu
(1)
i+1 + u

(1)
i + αu

(1)
i−1 −

β

2h
(u

(0)
i+1 − u

(0)
i−1) +

γ

4h
(u

(0)
i+2 − u

(0)
i−2)

On développe tous les termes en série de Taylor pour les exprimer en
fonction des grandeurs au noeud i,

u
(0)
i±1 = +u

(0)
i ± (1h)u

(1)
i +

(1h)2

2!
u
(2)
i ±

(1h)3

3!
u
(3)
i +

(1h)4

4!
u
(4)
i ±

(1h)5

5!
u
(5)
i ±O(h

6
)

u
(1)
i±1 = +u

(1)
i ± (1h)u

(2)
i +

(1h)2

2!
u
(3)
i ±

(1h)3

3!
u
(4)
i +

(1h)4

4!
u
(5)
i ±O(h

5
)

u
(0)
i±2 = +u

(0)
i ± (2h)u

(1)
i +

(2h)2

2!
u
(2)
i ±

(2h)3

3!
u
(3)
i +

(2h)4

4!
u
(4)
i ±

(2h)5

5!
u
(5)
i ±O(h

6
)
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DFC
6e ordre

αu
(1)
i+1 + u

(1)
i + αu

(1)
i−1 '

β
2h

(u
(0)
i+1 − u

(0)
i−1) + γ

4h
(u

(0)
i+2 − u

(0)
i−2)

Par substitution dans l’erreur de troncature, on trouve

τ = (2α+ 1)u
(1)
i +

αh2

2
u

(3)
i +

αh4

12
u

(5)
i

− β
(

u
(1)
i +

h2

12
u

(3)
i +

h4

5!
u

(5)
i

)
− γ

(
u

(1)
i +

h2

3
u

(3)
i +

2h4

15
u

(5)
i

)
±O(h6)

Pour obtenir un schéma d’ordre 5, il faut annuler les termes d’ordre 0,
d’ordre 2 et d’ordre 4. On obtient donc le système d’équations

2α− β − γ = −1

6α− β − 4γ = 0

10α− β − 16γ = 0
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DFC
6e ordre

αu
(1)
i+1 + u

(1)
i + αu

(1)
i−1 '

β
2h

(u
(0)
i+1 − u

(0)
i−1) + γ

4h
(u

(0)
i+2 − u

(0)
i−2)

αu(1) = βu(0)

La solution de ce système permet d’obtenir les coefficients

(α, β, γ) =
1

9
(3, 14, 1)

• Le schéma du sixième ordre est donc obtenu par substition de ces
coefficents dans la définition.

• La dérivation implicite permet ainsi de passer de l’ordre 4 à l’ordre 6.

• Des schémas compactes d’ordre supérieur sont obtenus par
agrandissement du stencil.
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DFC
6e ordre

αu
(1)
i+1 + u

(1)
i + αu

(1)
i−1 '

β
2h

(u
(0)
i+1 − u

(0)
i−1) + γ

4h
(u

(0)
i+2 − u

(0)
i−2)

αu(1) = βu(0)

Cette approximation peut s’exprimer sous forme matricielle avec les
matrices α et β données par

α =


? ?
α 1 α

α 1 α
α 1 α

? ?



β =
β

2h


? ?
−1 0 +1

−1 0 +1
−1 0 +1

? ?

 +
γ

4h


? ? ?
? ? ? ?
−1 0 0 0 +1

? ? ? ?
? ? ?



Comme ces schémas ne sont pas définis au bord, il faut les substituer par
un schéma aux différences finies classiques et décentrés tout en
conservant l’ordre de l’approximation.
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DFC
6e ordre

αu
(1)
i+1 + u

(1)
i + αu

(1)
i−1 '

β
2h

(u
(0)
i+1 − u

(0)
i−1) + γ

4h
(u

(0)
i+2 − u

(0)
i−2)

Si on a des conditions aux limites périodiques, le schéma est défini
partout et on a les matrices circulaires

α =


1 α α
α 1 α

α 1 α
α 1 α

α α 1



β =
β

2h


0 +1 −1
−1 0 +1

−1 0 +1
−1 0 +1

+1 −1 0

 +
γ

4h


0 0 +1 −1 0
0 0 0 +1 −1
−1 0 0 0 +1
+1 −1 0 0 0
0 +1 −1 0 0



On rappele que la dérivée est obtenue de manière implicite par résolution
du système d’équations

αu(1) = βu(0)

ou en calculant explicitement la matrice de dérivation

D = α−1β
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DFC
6e ordre

D = α−1β

Dans le cas d’un maillage de 5 points avec conditions aux limites
périodiques, la matrice de dérivation s’écrit

D =
β

(α2 + α− 1)


0 +(α− 1) +α −α −(α− 1)

−(α− 1) 0 +(α− 1) +α −α
−α −(α− 1) 0 +(α− 1) +α
+α −α −(α− 1) 0 +(α− 1)

+(α− 1) +α −α −(α− 1) 0



+
γ

(α2 + α− 1)


0 +α −1 +1 −α
−α 0 +α −1 +1
+1 −α 0 +α −1
−1 +1 −α 0 +α
+α −1 +1 −α 0


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