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Solutions X

1 Linéarisation

Première méthode. En utilisant l’inconnue u = (v, p)T, les équations de Navier–Stokes peuvent
s’écrire sous la forme générale

∂t(Mu) + A(u) = f , (1)

où les définitions suivantes ont été utilisées

M =

(
1 0
0 0

)
, A(u) =

(
Re v ·∇v + ∇p−∇2v

∇ · v

)
, f =

(
g
0

)
. (2)

De manière à établir les équations linéarisées autour d’une solution d’équilibre u, on considère la solution
d’équilibre perturbée

u = u︸︷︷︸
équilibre

+ εu′︸︷︷︸
perturbation

, ε� 1. (3)

Par un développement limité au premier ordre, on obtient

∂t(Mu) + ∂t(εMu′) + A(u) +
∂A

∂u

∣∣∣∣
u

(εu′) = f . (4)

Etant donné que l’équilibre u est solution des équations de départ, l’évolution de la perturbation est
gouvernée par l’équation linéarisée

∂t(Mu′) +
∂A

∂u

∣∣∣∣
u

(u′)︸ ︷︷ ︸
L(u,u′)

= 0. (5)

L’opérateur spatial linéarisé autour de l’équilibre u appliqué à u′ s’écrit

L(u,u′) =

= ∂A
∂u |u︷ ︸︸ ︷(

Re (v ·∇ + ·∇v)−∇2 ∇
∇· 0

) = u′︷ ︸︸ ︷(
v′

p′

)
(6)

=

(
Re (v ·∇v′ + v′ ·∇v)−∇2v′ + ∇p′

∇ · v′
)
. (7)

Nous pouvons ainsi établir les équations de Navier–Stokes linéarisées

∂tv
′ + Re (v ·∇v′ + v′ ·∇v) = −∇p′ + ∇2v′, (8)

∇ · v′ = 0, (9)

qui ne dépendent pas de l’équilibre en pression puisque les équations de Navier–Stokes sont linéaires par
rapport à cette variable.
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Seconde méthode. De manière équivalente à l’équation (3), on considère la solution d’équilibre per-
turbée explicitement formulée pour chaque variable

v = v + εv′, (10)

p = p+ εp′, (11)

que l’on remplace directement dans les équations de Navier–Stokes pour obtenir

∂t(v + εv′) + Re (v + εv′) ·∇(v + εv′) = −∇(p+ εp′) + ∇2(v + v′) + g, (12)

∇ · (v + εv′) = 0. (13)

En tenant compte du fait que l’équilibre est solution des équations, en négligeant les termes d’ordre ε2,
et par linéarité des opérations de dérivation, les équations précédentes se simplifient sous la forme

∂tv
′ + Re (v ·∇v′ + v′ ·∇v) = −∇p′ + ∇2v′, (14)

∇ · v′ = 0, (15)

qui est strictement équivalente aux équations (8)-(9).

2 Systèmes d’équations

1. Etant donné que l’équation des ondes comporte une dérivée temporelle seconde de la variable u,
nous la réécrivons sous la forme d’un système de deux équations comportant chacune une dérivée
temporelle première. En introduisant la nouvelle variable v définie comme la dérivée temporelle de
la variable u, nous obtenons le système d’équations

∂u

∂t
− v = 0,

∂v

∂t
− c2 ∂

2u

∂x2
= 0.

2. Avec la méthode des volumes finis, le domaine de calcul Ω est subdivisé en sous-domaines Ωi

appelés volumes finis. A chaque volume fini est associé un noeud i, placé au centre et dont la
coordonnée vaut xi. La valeur de la solution numérique constante sur chaque volume fini est notée
ui. A chaque volume fini Ωi sont également associées des fonctiosn test valant 1 sur le volume fini
Ωi auquel elles sont rattachées et 0 en dehors.

Ωi

Figure 1: Méthode des volumes finis, définitions.

Nous admettrons que tous les volumes finis ont une longueur h et une surface latérale S arbitraire
puisque nous considérons un problème mono-dimensionnel.

La première étape de la discrétisation est la dérivation de la formulation faible qui s’obtient en
premier lieu par le produit scalaire avec les fonctions test φ et ψ,

∫
Ω

(
∂u

∂t
− v
)
· φ dV = 0, ∀φ ∈ L2(Ω),∫

Ω

(
∂v

∂t
− c2 ∂

2u

∂x2

)
· ψ dV = 0, ∀ψ ∈ L2(Ω).

(16)
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Puis nous intégrons par parties le terme qui comporte une dérivée seconde en espace
∫

Ω

(
∂u

∂t
− v
)
· φ dV = 0, ∀φ ∈ L2(Ω),∫

Ω

∂v

∂t
· ψ + c2 ∂u

∂x
· ∂ψ
∂x

dV −
∫
∂Ω

c2 ∂u

∂x
· ψ n dS = 0, ∀ψ ∈ H1(Ω),

(17)

faisant ainsi apparâıtre le terme de flux. Par additivité de l’intégration, cette formulation est
équivalente à la somme sur les p volumes finis qui subdivisent le domaine Ω

p∑
i=1

∫
Ωi

(
∂u

∂t
− v
)
· φi︸︷︷︸

=1

dVi = 0, ∀φi ∈ L2(Ωi),

p∑
i=1

∫
Ωi

∂v

∂t
· ψi︸︷︷︸

=1

+c2 ∂u

∂x
· ∂ψi

∂x︸︷︷︸
=0

dVi −
p∑

i=1

∫
∂Ωi

c2 ∂u

∂x
· ψi︸︷︷︸

=1

n dSi = 0, ∀ψi ∈ H1(Ωi).

(18)

Après simplification, nous obtenons la relation suivante qui doit être vérifiée sur chaque volume
fini 

∫
Ωi

(
∂u

∂t
− v
)
dVi = 0, ∀i,∫

Ωi

∂v

∂t
dVi −

∫
∂Ωi

c2 ∂u

∂x
n dSi = 0, ∀i.

(19)

Comme proposé dans la donnée, nous utilisons un schéma aux différences finies centré du second
ordre permettant d’obtenir les dérivées premières aux bord des volumes finis à partir des valeurs
nodales adjacentes. On obtient ainsi le système d’équations différentielles ordinaires

(u̇i − vi)hS = 0, ∀i,

v̇ihS − c2

(
−ui − ui−1

h
+

ui+1 − ui

h

)
S = 0, ∀i,

(20)

qui peut s’écrire après simplification sous la forme
u̇i − vi = 0, ∀i,

v̇i − c2

(
ui+1 − 2ui + ui−1

h2

)
= 0, ∀i.

(21)

Sous forme matricielle, ceci s’écrit(
I 0
0 I

)(
u̇
v̇

)
+

(
0 −I
A 0

)(
u
v

)
=

(
0
0

)
, (22)

où apparaissent la matrice identité I et la matrice

A = − c2

h2


. .
. . .

+1 −2 +1
. . .

. .

 . (23)

3. En utilisant la méthode theta pour résoudre le système d’équations différentielles ordinaires, nous
obtenons le système algébrique suivant(

+ I
∆t −θI

+θA + I
∆t

)(
ũ
v

)(n+1)

=

(
+ I

∆t −(θ − 1)I
+(θ − 1)A + I

∆t

)(
u
v

)(n)

, (24)

à résoudre à chaque pas de temps pour l’intégration temporelle à partir de conditions initiales
données.
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