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Equations de Navier–Stokes
Formulations adimensionnelles

• Temps d’advection T = L
V ,

∂t̂v̂ + v̂ · ∇̂v̂ = −∇̂p̂+ Re−1∇̂2v̂ + ĝ

∇̂ · v̂ = 0

• Temps de diffusion T = ρL2

µ ,

∂t̂v̂ + Re v̂ · ∇̂v̂ = −∇̂p̂+ ∇̂2v̂ + ĝ

∇̂ · v̂ = 0

où le nombre de Reynolds Re =
ρVL

µ
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Discrétisation spatiale
Formulation forte

Pour se concentrer sur l’aspect non-linéaire des équations de
Navier–Stokes, on considère dans un premier temps l’équation de Burgers

∂u

∂t
− ν ∂

2u

∂x2
+ u

∂u

∂x
= f, Ω = [a,b]

u(x, t0) = u0(x)

avec des conditions aux limites périodiques et la solution

u(x, t) ∈ C2(Ω)
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Discrétisation spatiale
Formulation intégrale

La formulation intégrale est obtenue par produit scalaire par une fonction
test (pondération). On obtient ainsi∫

Ω

(
∂u

∂t
− ν ∂

2u

∂x2
+ u

∂u

∂x

)
· v dV =

∫
Ω

f · v dx, ∀v ∈ L2(Ω)
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Discrétisation spatiale
Différences finies

En utilisant les fonctions test de la méthode des différences finies, il vient∫
Ω

(
∂u

∂t
− ν ∂

2u

∂x2
+ u

∂u

∂x

)
· δ(xi) dx =

∫
Ω

f · δ(xi) dx, ∀i

soit
∂u

∂t

∣∣∣∣
xi

− ν
∂2u

∂x2

∣∣∣∣
xi

+ u
∂u

∂x

∣∣∣∣
xi

= fi, ∀i

Avec une approximation centrée du second ordre, on obtient les
équations semi-discrètes sous forme indicielle

u̇i − ν
ui+1 − 2ui + ui−1

h2
+ ui

ui+1 − ui−1

2h
= fi, ∀i
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Discrétisation spatiale
Différences finies

et sous forme matricielle, on a

Mu̇ + A(u)u = Mf

où la matrice de masse M = I, et la matrice de discrétisation circulaire
et tridiagonale

A(u) = −
ν

h2



−2 +1 +1

. . .
. . .

. . .

+1 −2 +1

. . .
. . .

. . .

+1 +1 −2


+

1

2h



0 +u1 −u1

. . .
. . .

. . .

−ui 0 +ui

. . .
. . .

. . .

+up −up 0


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Discrétisation temporelle
Méthode-θ

Pour la discrétisation temporelle, on écrit le système sous la forme

Mu̇ = Mf −A(u)u = F(u)

Par exemple, en utilisant la méthode-theta, il vient

(Mu̇)t(n) '
Mũ(n+1) −Mũ(n)

∆t
= (1− θ)F(ũ(n)) + θF(ũ(n+1))

étant donné que dans ce cas particulier

M(n) = M = const
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Discrétisation temporelle
Méthode-θ

En isolant les termes inconnus à gauche, on obtient le système
d’équations algébriques

H(ũ(n+1))ũ(n+1) = R(ũ(n))ũ(n) + (1− θ)Mf (n) + θMf (n+1)

où les matrices H et R sont données par

H(u) =
M

∆t
+ θA(u),

R(u) =
M

∆t
+ (θ − 1)A(u)

Pour chaque pas de temps, on doit résoudre un système d’équations
non-linéaires de la forme

A(x)x = b
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Advection implicite
Discrétisation spatiale

Si on considère maintenant les équations de Navier–Stokes,

ρ
∂vx
∂t

+ vx
∂vx
∂x

+ vy
∂vx
∂y

= −∂p
∂x

+ µ

(
∂2vx
∂x2

+
∂2vx
∂y2

)
+ ρgx

ρ
∂vx
∂t

+ vx
∂vy
∂x

+ vy
∂vy
∂y

= −∂p
∂y

+ µ

(
∂2vy
∂x2

+
∂2vy
∂y2

)
+ ρgy

∂vx
∂x

+
∂vy
∂y

= 0

la discrétisation spatiale conduit à des équations semi-discrètes qui
s’écrivent formellement

Mv̇x + A(v)vx = −Dxp + Mgx

Mv̇y + A(v)vy = −Dyp + Mgy

Dxvx + Dyvy = 0
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Advection implicite
Discrétisation spatiale

De manière équivalente, on peut écrire ces équations sous la forme M 0 0
0 M 0
0 0 0

 v̇x
v̇y
ṗ

+

 A(v) 0 Dx

0 A(v) Dy

Dx Dy 0

 vx
vy
p

 =

 Mgx
Mgy
0


Puis, en définissant l’opérateur divergence D = (Dx Dy), on a(

M 0
0 0

)(
v̇
ṗ

)
+

(
A(v) G
D 0

)(
v
p

)
=

(
Mg
0

)
avec v = (vx vy)T, g = (gx gy)T et le gradient G = DT
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Advection implicite
Discrétisation temporelle

Après discrétisation temporelle en utilisant la méthode-θ, on obtient le
système d’équations non-linéaires suivant(

H(n+1) G
D 0

)(
ṽ
p̃

)(n+1)

=

(
f̃
0

)(n+1)

où le second membre est donné par

f̃ (n+1) = R(n)ṽ(n) + (1− θ)Mg(n) + θMg(n+1)

Pour chaque pas de temps, on est à nouveau confronté à la résolution
d’un système d’équations non-linéaires de la forme

A(x)x = b
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Systèmes d’équations non-linéaires
Définition

On considère le système de p équations à p inconnues de la forme

p∑
j=1

Aij({xk})xj = bi, i, k = 1, . . . ,p

avec les coefficients bi constants. On peut écrire ce système sous la forme

A(x)x = b

A ∈ Rp×p

x, b ∈ Rp
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Systèmes non-linéaires
Méthode itérative de Picard

A(x)x = b

La méthode de Picard est définie par

x(0) donné

A(x(k−1)) x(k) = b

En définissant le résidu à l’itération k − 1

r(x(k−1)) = +A(x(k−1)) x(k−1) − b

= +A(x(k−1)) x(k−1) −A(x(k−1)) x(k)

= −A(x(k−1)) δx(k)

avec l’incrément
δx(k) = x(k) − x(k−1)
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Systèmes non-linéaires
Méthode itérative de Picard

A(x(k−1)) x(k) = b

r(x(k−1)) = A(x(k−1)) x(k−1) − b

δx(k) = x(k) − x(k−1)

on peut exprimer la méthode de la manière suivante

x(0) donné

A(x(k−1)) δx(k) = −r(x(k−1))

x(k) = x(k−1) + δx(k)

où la seconde étape est la résolution d’un système d’équations linéaires
permettant de déterminer l’incrément.
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Systèmes non-linéaires
Méthode itérative de Picard

A(x(k−1)) x(k) = b

r(x(k−1)) = A(x(k−1)) x(k−1) − b
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Systèmes non-linéaires
Méthode itérative de Newton

r(x(k−1)) = A(x(k−1)) x(k−1) − b

δx(k) = x(k) − x(k−1)

Pour la méthode de Newton, on écrit le résidu à l’itération k sous la
forme

r(x(k)) = r(x(k−1) + δx(k))

où l’incrément δx(k) est à déterminer. En utilisant un développement de
Taylor au premier ordre, on obtient l’approximation

r(x(k)) ' r(x(k−1)) +
∂r(x)

∂x

∣∣∣∣
x(k−1)︸ ︷︷ ︸

L(x(k−1))

δx(k) = 0

avec L la matrice jacobienne. Ceci est un système d’équations linéaires
permettant de déterminer l’incrément.
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Systèmes non-linéaires
Méthode itérative de Newton

A(x(k−1)) x(k) = b

r(x(k−1)) = A(x(k−1)) x(k−1) − b

r(x(k)) ' r(x(k−1)) +
∂r(x)
∂x

∣∣∣
x(k−1)

δx(k) = 0
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Systèmes non-linéaires
Méthode itérative de Newton

r(x(k−1)) = A(x(k−1)) x(k−1) − b

r(x(k−1)) + L(x(k−1))δx(k) = 0

On peut donc définir la méthode de Newton par l’algorithme

x(0) donné

L(x(k−1))δx(k) = −r(x(k−1))

x(k) = x(k−1) + δx(k)

avec la matrice jacobienne

Lij(x
(k−1)) =

∂ri
∂xj

∣∣∣∣
x(k−1)

obtenue par discrétisation de l’opérateur continu linéarisé.
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Systèmes non-linéaires
Méthode itérative de Newton avec relaxation

r(x(k−1)) = A(x(k−1)) x(k−1) − b

x(k) = x(k−1) + δx(k)

Pour améliorer la robustesse de la méthode, on peut relaxer les itérations

x(0) donné

L(x(k−1))δx(k) = −r(x(k−1)), k ≥ 0

x(k) = x(k−1) + λ(k)δx(k), λ(k) ∈ ]0, 1]

où le paramètre λ(k) est déterminé de telle sorte que

|| r(x(k−1) + λ(k)δx(k)) || < || r(x(k−1)) ||

On peut procéder de manière analogue pour la méthode de Picard.
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Systèmes d’équations non-linéaires
Critères d’arrrêt

• Nombre d’itérations
k ≥ M

où M est un nombre d’itérations maximal fixé

• Convergence
||r(x(k))||
||f ||

≤ τ

où τ est une tolérance fixée
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Advection explicite
Discrétisation spatiale

Si on reprend les équations de Navier–Stokes sans incorporer les termes
non-linéaires à la matrice A, on obtient les équations semi-discrètes

Mv̇x + Avx = −DT
,xp + M(gx − ax)

Mv̇y + Avy = −DT
,yp + M(gy − ay)

D,xvx + D,yvy = 0

On peut écrire ces équations sous la forme(
M 0
0 0

)(
v̇
ṗ

)
+

(
A G
D 0

)(
v
p

)
=

(
M(g − a)

0

)
formellement équivalente aux équations de Stokes semi-discrètes avec un
terme source modifié.
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Advection explicite
Discrétisation temporelle

La discrétisation temporelle de ce système par la méthode-theta donne(
H G
D 0

)(
ṽ
p̃

)(n+1)

=

(
f̃
0

)(n+1)

avec le terme de forçage

f̃ (n+1) = Rṽ(n) + (1− θ)M(g − ã)(n) + θM(g − ã)(n+1)

On a donc un système linéaire à résoudre à chaque pas de temps à
condition de trouver une estimation du terme d’advection au temps n+ 1

ã(n+1) ' e(ã(n), ã(n−1), . . . , ã(n−s)), s < n
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Advection explicite
Extrapolation du premier ordre

En utilisant une série de Taylor progressive en temps, on peut exprimer

u(n+1) = u(n) +
∆t

1!

∂u

∂t

∣∣∣∣
t(n)

+
∆t2

2!

∂2u

∂t2

∣∣∣∣
t(n)

+
∆t3

3!

∂3u

∂t3

∣∣∣∣
t(n)

±O(∆t4)︸ ︷︷ ︸
ε=O(∆t)

En tronquant l’approximation au premier ordre, on obtient
l’approximation

u(n+1) = u(n) ±O(∆t)
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Advection explicite
Extrapolation du second ordre

De la même manière, en utilisant les développements en série de Taylor

u(n+1) = u(n) +
∆t

1!

∂u

∂t

∣∣∣∣
t(n)

+
∆t2

2!

∂2u

∂t2

∣∣∣∣
t(n)

+
∆t3

3!

∂3u

∂t3

∣∣∣∣
t(n)

±O(∆t4)

u(n−1) = u(n) − ∆t

1!

∂u

∂t

∣∣∣∣
t(n)

+
∆t2

2!

∂2u

∂t2

∣∣∣∣
t(n)

− ∆t3

3!

∂3u

∂t3

∣∣∣∣
t(n)

±O(∆t4)

on peut obtenir l’approximation du second ordre

u(n+1) = 2u(n) − 1u(n−1) ±O(∆t2)
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Advection explicite
Extrapolation d’ordre n

u(n+1) = u(n) ±O(∆t)

u(n+1) = 2u(n) − 1u(n−1) ±O(∆t2)

Les approximation du premier et du second ordre obtenues précédemment
s’écrivent

±O(∆t1) = 1u(n+1) − 1u(n)

±O(∆t2) = 1u(n+1) − 2u(n) + 1u(n−1)

On remarque que les coefficients se construisent selon un triangle de
Pascal avec alternance des signes par colonne

O n+ 1 n n− 1 n− 2 n− 3
1 +1 −1 0 0 0
2 +1 −2 +1 0 0
3 +1 −3 +3 −1 0
4 +1 −4 +6 −4 +1
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Advection explicite

• Restriction sur l’ordre d’extrapolation aux premiers pas de temps
(s < n)

• Restriction sur le pas de temps pour la stabilité numérique
(méthode explicite)

• Coût de calcul par pas de temps plus faible par rapport au
traitement implicite du terme d’advection
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Références

• High-Order Methods for Incompressible Fluid Flow, M.O. Deville,
P.F. Fischer, E.H. Mund, Cambridge University Press, 2002

• Modélisation numérique en science et génie des matériaux, M.
Rappaz, M. Bellet, M. Deville, Presses Polytechniques Universitaires
Romandes, 1999


	Equation de Burgers
	Discrétisation spatiale
	Discrétisation temporelle

	Advection implicite
	Discrétisation spatiale
	Discrétisation temporelle

	Systèmes d'équations non-linéaires
	Définition
	Méthode itérative de Picard
	Méthode itérative de Newton
	Critères d'arrêt

	Advection explicite
	Discrétisation spatiale
	Discrétisation temporelle
	Méthodes d'extrapolation

	Références
	


