Burgers Advection implicite Systemes non-linéaires Advection explicite

0000 (e]e] [e] [e]

(e} o 000 [e]
0000 0000
[e]

Méthodes de discrétisation en fluides
10. Equations de Navier—Stokes

Marc A. Habisreutinger

Ecole Polytechnique Fédérale de Lausanne
Section de génie mécanique, CH-1015 Lausanne

Jeudi 3 juin 2021

Références
o]



Burgers
0000
[e]e]

Advection implicite Systemes non-linéaires
[e]e] o]
[e] 000

0000

o]

Contenu

Equation de Burgers
Discrétisation spatiale
Discrétisation temporelle

Advection implicite
Discrétisation spatiale
Discrétisation temporelle

Systémes d’équations non-linéaires
Définition
Méthode itérative de Picard
Méthode itérative de Newton
Criteres d’arrét

Advection explicite
Discrétisation spatiale
Discrétisation temporelle
Méthodes d’extrapolation

Références

Advection explicite
o]

[e]
0000

Références
o]



Burgers Advection implicite Systemes non-linéaires Advection explicite

0000 (e]e] [e] [e]

(e} o 000 [e]
0000 0000
[e]

Equations de Navier—-Stokes

Formulations adimensionnelles

® Temps d'advection T

Il
<=

® Temps de diffusion T = %’

ou le nombre de Reynolds |Re =
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Discrétisation spatiale

Formulation forte

Pour se concentrer sur |'aspect non-linéaire des équations de
Navier-Stokes, on considére dans un premier temps I'équation de Burgers

Ju 0%u ou
a—V@‘FU%—f, Q—[a,b]

u(x, tg) = ug(x)

avec des conditions aux limites périodiques et la solution

u(z,t) € C%(Q)




Burgers Advection implicite Systemes non-linéaires Advection explicite Références

0e00 (e]e] [e] [e] [e]
(e} o 000 [e]

0000 0000

[e]

Discrétisation spatiale

Formulation intégrale

La formulation intégrale est obtenue par produit scalaire par une fonction
test (pondération). On obtient ainsi

ou 0%u ou 2
/Q<at 82+u6>~vdV—/ﬂf~vda:, Vo € L()
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Discrétisation spatiale

Différences finies

En utilisant les fonctions test de la méthode des différences finies, il vient

ou 0%u ou .

Ju
ox

soit
9%u
-
ox?

ou

a +u

X4

=f, Vi

Xi Xi
Avec une approximation centrée du second ordre, on obtient les
équations semi-discretes sous forme indicielle

Wi — 205 + w31 Uil — Ui

ﬁi —V h2 +u; oh :fi, Vi
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Discrétisation spatiale

Différences finies

et sous forme matricielle, on a

| M + A(u)u = M |

ol la matrice de masse M =1, et la matrice de discrétisation circulaire
et tridiagonale

—2 +1 +1 0 “+uy —uj

A(u) = 2 +1 -2 +1 —+ o —u; 0 +u;

+1 +1 —2 +up —up 0
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Discrétisation temporelle
Méthode-0

Pour la discrétisation temporelle, on écrit le systeme sous la forme
Mu = Mf — A(u)u = F(u)
Par exemple, en utilisant la méthode-theta, il vient

S(n+1) ~(n)
(M) () ~ Mu At Mu™ _ (1—0)F(a™) + oF(a"+1)

étant donné que dans ce cas particulier

M) = M = const
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Discrétisation temporelle
Méthode-0

En isolant les termes inconnus a gauche, on obtient le systeme
d'équations algébriques

Hu")am ) = R(a™)a™ + (1 — o)Mf™ + gmfr+D

ol les matrices H et R sont données par

H(u) = %JrQA()

0—1)A
= 20— DAW)
Pour chaque pas de temps, on doit résoudre un systéme d'équations

non-linéaires de la forme
Ax)x=Db
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Advection implicite
Discrétisation spatiale
Si on considére maintenant les équations de Navier—Stokes,

%+ %+ %ff@ 82% +827}I +
Pae T T oy T bx a2 | oyz ) P9
Qv Ov, v,  Op 0%v, 0%y,
Par T Ty T oy 022 g2 ) TP
Ovy ~ Ovy,
or "oy "

la discrétisation spatiale conduit a des équations semi-discrétes qui
s'écrivent formellement

Mv, + A(v)v, = -D,p + Mg,
Mv, + A(V)Vy = -Dyp + Mg,
D,v; +Dyv, =0
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Advection implicite

Discrétisation spatiale

De maniére équivalente, on peut écrire ces équations sous la forme

M 0 O Vi Av) O D, Vo Mg,
0 M 0 vy |+ O A(v) D, vy, | =| Mg,
0 0 0 P D, D, 0 p 0

Puis, en définissant |'opérateur divergence D = (D, D,), on a

(o)) (%7 §) ()= (%)

avec v = (v, v;))T, g = (g, g,)" et le gradient G = DT
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Advection implicite
Discrétisation temporelle

Apres discrétisation temporelle en utilisant la méthode-6, on obtient le
systeme d’'équations non-linéaires suivant

HOHD G v\ Y
D o )\5 Lo

ou le second membre est donné par
f:(n-‘rl) _ R(n){«,(n) + (1 _ G)Mg(") + 9Mg<n+1)

Pour chaque pas de temps, on est a nouveau confronté a la résolution
d'un systeme d’équations non-linéaires de la forme

Ax)x=Db
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Systemes d’'équations non-linéaires

Définition

On considere le systeme de p équations a p inconnues de la forme
P
ZA’LJ {Xk} '_bia ivk:]-v"'vp
Jj=1

avec les coefficients b, constants. On peut écrire ce systéme sous la forme

Ax)x=Db
A € RP¥P
x, b € RP
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Systemes non-linéaires Ao — b

Méthode itérative de Picard

La méthode de Picard est définie par
x(© donné
AxFDyx®) = p
En définissant le résidu a l'itération &k — 1

r(xF ) = pA(xFD) x-D _p
- +A(x(k*1)) x(F=1) _ A(X(kfl)) x(F)
= —A(xFD)y ox®

avec l'incrément
5x(F) = x(k) _ x(k=1)
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> soAad A=y %) _p
Systemes non-linéaires ) x
r(x(k_l)) = A(x(k_l)) x(F=1 _p
Méthode itérative de Picard

Sx(B) — xc(B) _ 5 (k—1)

on peut exprimer la méthode de la maniére suivante

x(© donné
A(xF=Dy ox ) = _p(xF-1)

B) g (b=1) | gy

x(

ou la seconde étape est la résolution d'un systeme d'équations linéaires
permettant de déterminer I'incrément.
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Méthode itérative de Picard r(x ) (& ) x

O () (@B

Y

-
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"
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[
—
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Systemes non-linéaires rF 1) = A=) D)

i} L S5x(F) = x(B) _ 5 (k=1)
Méthode itérative de Newton * * *

Pour la méthode de Newton, on écrit le résidu a I'itération k sous la
forme

r(x®) = r(x*=D 4 5x*)

otr I'incrément 6x(¥) est a déterminer. En utilisant un développement de
Taylor au premier ordre, on obtient I'approximation

_ or(x)
(k)Y ~ (k—1) (k) _
r(x ~ r(x + ox\"" =0
) a0y 4

L(x(k=1))

avec L la matrice jacobienne. Ceci est un systéme d'équations linéaires
permettant de déterminer I'incrément.
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Ax*=Dy x(k) = p
r(x(k_l)) = A(x(k_l)) x(F=1 _p

Méthode itérative de Newton r(x(®)) = p(x(F-1) 4 2x@) (ko 8x) =

Systemes non-linéaires
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Systemes non-linéaires Py — A1) x(B-D) _

. e s (k—1) Lix(*=1ysx(¥) — o
Méthode itérative de Newton e )+ Lix )8x

On peut donc définir la méthode de Newton par I'algorithme

x(© donné
L(x*1)5x®) = —r(x*~1))
x(F) = x(k=1) 4 §x ()

avec la matrice jacobienne

Ori

Lij(x(kil)): 0% | v-1
J Ix (k=1

obtenue par discrétisation de |'opérateur continu linéarisé.
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Systemes non-linéaires

r(x(FmDy = A(x(F=1)) x(k=1) _

) o . (8) = (k1) 4 gy (k)
Méthode itérative de Newton avec relaxation * * *

Pour améliorer la robustesse de la méthode, on peut relaxer les itérations

x(© donné
L(x®*D)ox® = —p(x*Y), k>0
x(F) = x(+=1D L AW gx®) - \F) 210, 1]
ol le parametre A(%) est déterminé de telle sorte que
e+ AP ax W) || < || e (x*V) |

On peut procéder de maniere analogue pour la méthode de Picard.
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Systemes d’'équations non-linéaires

Criteres d'arrrét

® Nombre d’itérations
k>M

ou M est un nombre d’itérations maximal fixé

e Convergence
[[e®)|
- ‘77 S T
[I£1]

ou 7 est une tolérance fixée
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Advection explicite

Discrétisation spatiale

Si on reprend les équations de Navier-Stokes sans incorporer les termes
non-linéaires a la matrice A, on obtient les équations semi-discrétes

Mv, + Av, = -D’,p + M(g, — a,)
Mv, + Av, = -D’p+ M(g, — a,)
D,v,+Dyv,=0

On peut écrire ces équations sous la forme

M 0 v + A G v) ([ M(g—a)

0 o0 p D o p /) 0
formellement équivalente aux équations de Stokes semi-discrétes avec un
terme source modifié.
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Advection explicite

Discrétisation temporelle

La discrétisation temporelle de ce systeme par la méthode-theta donne

H G)\/v\™ /§\"
D o P ~\ o
avec le terme de forgage
£+ — Rv(™ 4 (1 — 0)M(g — a)™ + M (g — a)"*+Y

On a donc un systéme linéaire a résoudre a chaque pas de temps a
condition de trouver une estimation du terme d’'advection au temps n + 1

amt ~e(@a™,a b, at) s <n
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Advection explicite

Extrapolation du premier ordre

En utilisant une série de Taylor progressive en temps, on peut exprimer

At® 93u

o 3 98

e=0O(At)

At? 9%u

At Ou
nt1) _ g 4 At
- o T2 P

( u
h 1 ot

+0(AtY)

t(n)

En tronquant |'approximation au premier ordre, on obtient
|"approximation
u™ b = 4 £ O(At)
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Advection explicite

Extrapolation du second ordre

De la méme maniére, en utilisant les développements en série de Taylor

At Ou At2 9%y A3 9By
(nt1) _ (), A Ou At? 9%u A Pul g
u R T I TR = IO T Tl I Gl
At Ou At2 9%y A3 9By
(n—1) _ (m) _ At Ou A8 Pul - AE Pul
u R T TR T2 IO T Tl I Gl

on peut obtenir I'approximation du second ordre

™t = 2u™ — 19D £ O(At?)
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Advection explicite

w1 = 4™ 1+ o(AtL)

. , u(m D) = oy(m) _qu(n=1) 4 O(AtQ)
Extrapolation d'ordre n

Les approximation du premier et du second ordre obtenues précédemment
s'écrivent

+O(AtY) = 1™+ — 1u™)

+0O(At?) = Tu+) — 2u™ 4 1y(*—1)

On remarque que les coefficients se construisent selon un triangle de
Pascal avec alternance des signes par colonne

(’)‘n—i—l n n—1 n—-2 n-3

17 +1 -1 0 0 0
21 41 -2 +1 0 0
3| +1 -3 +3 -1 0
4| +1 -4 46 —4 +1
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Advection explicite

® Restriction sur |'ordre d'extrapolation aux premiers pas de temps
(s <n)

® Restriction sur le pas de temps pour la stabilité numérique
(méthode explicite)

® Coiit de calcul par pas de temps plus faible par rapport au
traitement implicite du terme d’advection
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