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Méthodes de discrétisation en fluides

11. Equations de Stokes instationnaires

Marc A. Habisreutinger

Ecole Polytechnique Fédérale de Lausanne
Section de génie mécanique, CH-1015 Lausanne

Jeudi 23 mai 2024



Navier-Stokes Discrétisation Découplage v-p

[e] (e]e] (e}
[e] [e]e]e} 00000000
(e]e]

Contenu

Equations de Navier-Stokes
Formulations adimensionnelles
Limite de Stokes

Discrétisation
Discrétisation spatiale
Discrétisation temporelle

Découplage vitesse-pression
Méthode directe d'Uzawa
Méthodes d'approximation
Méthodes d'approximation avec correction de pression

Références

Références
o]



Navier-Stokes Discrétisation Découplage v-p Références
[e]e] o]

00000000
[e]e]

o
[e]

(e]e]
[e]e]e}

Equations de Navier—Stokes

Formulations adimensionnelles

® Temps d'advection T = %

v +v Vo =-Vp+Re 'V +g
V.5=0
_ pL?

ou le nombre de Reynolds e
1
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Equations de Navier—Stokes

~-Vi+ V35 +g
Limite de Stokes

A la limite Re — 0, on peut négliger le terme d'advection. On obtient
ainsi les équations de Stokes

p 0w =—Vp+u Vv +pg
V-v=0

ce qui s'écrit explicitement sous la forme

vy ap v, | 9,
=—o-tu + + PYx

P o Ox 0x? Oy?
dv,  Op 0?v, 0wy,
P o __8y+'u<8x2 Ty ) TP
vy, Oy

8x+8y
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Sous forme semi-discrete, ces équations deviennent formellement

De maniére équivalente, on peut écrire ces équations sous la forme

Discrétisation
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Discrétisation spatiale

Mv, + Av, =
Mv, + Av,
D,v, +Dyv,

0
D,

—Dyp + Mg,

0

0
A
D

Y

D,
Dy
0
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Discrétisation spatiale

Puis, en définissant |'opérateur divergence D = (D, D,), on a

M 0 \4 n A G v\ ([ Mg
0 0 p D 0 p) -\ o
avec v = (v, v;))T, g = (g, g,)" et le gradient G = DT

® |La matrice de masse du systeme complet est singuliere
® Systéme d'équations différentielles ordinaires pour la vitesse

® Systeme d'équations algébriques pour la pression
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Discrétisation temporelle MY + Av 4 Gp = Mg

Mv + Av = Mg
Méthode-0

En ne considérant pas la pression, les équations de quantité de
mouvement semi-discretes s'écrivent

Mv =Mg - Av=F(v)
Avec la méthode-theta

Myt — My (

- _O\F(s (™ S (n+1)
Mv AL 1-0)F(v'"™) +0F (v )
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Disc. temp.
Méthode-0

MM gy p(m) 4 gRe(nHD)

Mo (n+1)
At

on obtient les équations discretes suivantes
H‘?(n—&-l) — R{,(n) + (1 _ Q)Mg(n) + eMg(n—O—l) — f-(n—‘—l)

ol les matrices H et R sont données par
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Méthode-0

En incorporant la contrainte d'incompressiblilité ainsi que la pression
correspondante au temps n + 1, on a

H G v <n+1>_ F ™D
D o p —\o

ou le second membre est donné par

f(n—i—l) _ R{,(n) + (1 _ G)Mg(") 4 gMg(n-H)
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Navier—Stokes Discrétisation
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Découplage vitesse-pression Ho(+) 4 @p(ntD) _ FntD)

. . , Do+ — o
Méthode directe d'Uzawa v

En multipliant les équations de quantité de mouvement discrétes par
DH!, on obtient une équation pour la pression

=1I

—— ~
DH 'Hv"*) 4+ DH'Gp"t) = DH'f(*+D)
—_— —_—
U

v*

=0

On peut écrire ces équations sous la forme triangulaire supérieure

H G 0) /30 A
0 U -D p+D) | =1 o
0 0 H v* f
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Découplage v-p H oG o)\ [ v £y
o0 U -D st | = o
. . . 0o o H o £
Méthode directe d'Uzawa v

La substitution inverse pour ce systeme donne la méthode d'Uzawa

Ho* = F0+)
Up"tY = Dv*
H{,(?H’l) —_ f'(n+1) o Gf)(’n+1)

avec |'opérateur d'Uzawa donné par

U=DH'G

e Méthode trop couteuse car elle requiert le calcul de H™!

® Méthode non utilisée en pratique mais qui sert a la compréhension
d’'autres méthodes
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H G (n+1) F o\ (D)
(5 5)(&)" =(s)

De maniere générale, on introduit une approximation du découplage
vitesse-pression en multipliant le gradient de pression par la quantité HQ

H HQG (n+1) B F (n+1) 5 (n+1)
(5 7%) () (o) +(3)

avec l'erreur de découplage
S(n+1 (HQ _ I)Gp(n+1)

Découplage v-p

o<

Méthodes d'approximation

T <

Si Q = H™! I'erreur de découplage est nulle et on récupére la méthode
d'Uzawa. On cherche donc une approximation telle que
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Découplage v-p

Hv("tD) L HQGp(m D) = f(n+1) 4 g(ntl)
Méthodes d'approximation

En omettant pour le moment I'erreur de découplage §(**1), I'équation
pour la pression devient

=1 =1
— — .
D Hle {,(n+1) + D Hle QG ﬁ(’rH*l) -D Hflf(TH*l)
—
=0 =0 =v*

On peut écrire ces équations sous la forme triangulaire supérieure

H HQG 0 Gnt1) Fy Y
0 U -D prtd | = o
0 o H v f
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DéCOU Ia e V- I QG I g(n+1) 0 \ (nt+1)
p g p o U -D p(ntD =( o
0 0 H v* f

Méthodes d’approximation

La substitution inverse pour ce systeme donne |'algorithme en trois étapes

He* = ot
Up"*Y) = Dv*
{,(’Hﬁ%l) _ ‘7* _ QGIS(n+1)

ol on a ajouté la troisieme équation a la premiére qu’on a ensuite
multiplié par H=!. Dans ce cas, I'opérateur d'Uzawa approché est donné
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Navier—Stokes Discrétisation
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Découplage vitesse-pression
H=M i9A
Méthodes d’approximation
La matrice de la méthode-theta peut s'écrire
M M
H=" -K =(I-AtKM)—
= +0A =X

Ainsi, son inverse devient

H ! = AtM (I - AtX) ™!
= AtM™D (AEX)F!

k=1
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ou la série de Taylor est convergente a condition que le rayon spectral

p(AtX) < 1
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Découplage vitesse-pression K— oA

; ; X=KM!
Méthodes d’approximation

On définit une approximation de I'inverse de H en tronquant la série a
I'ordre r

Q. =AM ) (AEX)F!
k=1

=AM~ (—AtGAM )R
k=1
Aux premiers ordres, on obtient ainsi
Q: = AtM™!
Q, = AtM ! — At2M 1AM !
Qs = AtM ! — A2M 1AM ! + APM T (AAM )2
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Découplage vitesse-pression

Méthodes d’approximation

L'ordre de précision de I'approximation est
=Q
——
H ' = AtM ! +0(0' At?)
H ' = AtM ™! - A2M 1AM ! + O(9>At?)
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K= —0A
X =KM !

H ' = AtM™! - APM '9AM ! + A*MHOAM )2 +O(* At?)

=Qs

De maniere générale, on a

H!'=Q, + 0@ A" ) ‘
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Découplage v-p M oHeG [/ e
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Méthodes d’approximation

L'erreur de découplage est donnée par

st = (HQ, — I)Gp D)

Aux premiers ordres, on obtient ainsi

s = (OAtAM ) G &~ O(0AL)!

5TV = (0AtAM )2 Gp" D) & O(9AL)?

st — (OAtAM ) GP Y ~ O(OAL)”

><n+1> (
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Découplage v-p e e S

, , . . P = AtMTISY (—At9AM 1)k 1
Méthodes d'approximation Q ¢ L= (At )

5t ~ O(AAL)

® ['ordre de I'approximation doit étre compatible avec |'ordre de la
méthode d’intégration temporelle

® Si la matrice de masse est facile a inverser, ces méthodes peuvent
étre tres efficaces

® |'erreur de découplage est non-nulle pour des solutions stationnaires

® |es solutions stationnaires éventuellement atteintes par intégration
temporelle peuvent dépendre du pas de temps
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(5 ")(5) =(7%7)

Correction de pression

En considérant la correction de pression comme nouvelle inconnue
H HQG v(n+1) Fnt1) 4 g(n+1)
D 0 prtD —p) ) = 0

on garantit que I'erreur de découplage soit nulle pour une solution
stationnaire puisque

s = (HQ: G - p™)
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Découplage vitesse-pression

Méthodes d'approximation avec correction de pression

Etant donné que
p"t —pl" = O(At),

I'ordre temporel est augmenté d'une unité. Ainsi,
= O(At)
st = (OAAM)IG (0D — ) & 0(8' A
sy = (0AtAM1)2G (P Y — p) & O(2 A2 1)

s = (0AtAM ' G(p Y — p) & O(6r AL
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