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Equations de Navier–Stokes
Formulations adimensionnelles

• Temps d’advection T = L
V ,

∂t̂v̂ + v̂ · ∇̂v̂ = −∇̂p̂+ Re−1∇̂2v̂ + ĝ

∇̂ · v̂ = 0

• Temps de diffusion T = ρL2

µ ,

∂t̂v̂ + Re v̂ · ∇̂v̂ = −∇̂p̂+ ∇̂2v̂ + ĝ

∇̂ · v̂ = 0

où le nombre de Reynolds Re =
ρVL

µ
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Equations de Navier–Stokes
Limite de Stokes

∇ · v̂ = 0

∂t̂v̂ + Re v̂ ·∇v̂ = −∇p̂ + ∇2v̂ + ĝ

A la limite Re→ 0, on peut négliger le terme d’advection. On obtient
ainsi les équations de Stokes

ρ ∂tv = −∇p+ µ∇2v + ρg

∇ · v = 0

ce qui s’écrit explicitement sous la forme

ρ
∂vx
∂t

= −∂p
∂x

+ µ

(
∂2vx
∂x2

+
∂2vx
∂y2

)
+ ρgx

ρ
∂vy
∂t

= −∂p
∂y

+ µ

(
∂2vy
∂x2

+
∂2vy
∂y2

)
+ ρgy

∂vx
∂x

+
∂vy
∂y

= 0
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Discrétisation spatiale

Sous forme semi-discrète, ces équations deviennent formellement

Mv̇x + Avx = −Dxp + Mgx

Mv̇y + Avy = −Dyp + Mgy

Dxvx + Dyvy = 0

De manière équivalente, on peut écrire ces équations sous la forme M 0 0
0 M 0
0 0 0

 v̇x
v̇y
ṗ

+

 A 0 Dx

0 A Dy

Dx Dy 0

 vx
vy
p

 =

 Mgx
Mgy
0


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Discrétisation spatiale

Puis, en définissant l’opérateur divergence D = (Dx Dy), on a(
M 0
0 0

)(
v̇
ṗ

)
+

(
A G
D 0

)(
v
p

)
=

(
Mg
0

)
avec v = (vx vy)T, g = (gx gy)T et le gradient G = DT

• La matrice de masse du système complet est singulière

• Système d’équations différentielles ordinaires pour la vitesse

• Système d’équations algébriques pour la pression
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Discrétisation temporelle
Méthode-θ

Mv̇ + Av + Gp = Mg

Mv̇ + Av = Mg

En ne considérant pas la pression, les équations de quantité de
mouvement semi-discrètes s’écrivent

Mv̇ = Mg −Av = F(v)

Avec la méthode-theta

Mv̇ ≈ Mṽ(n+1) −Mṽ(n)

∆t
= (1− θ)F(ṽ(n)) + θF(ṽ(n+1))
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Disc. temp.
Méthode-θ

Mṽ(n+1)−Mṽ(n)

∆t
= (1− θ)F(ṽ(n)) + θF(ṽ(n+1))

on obtient les équations discrètes suivantes

Hṽ(n+1) = Rṽ(n) + (1− θ)Mg(n) + θMg(n+1) = f̃ (n+1)

où les matrices H et R sont données par

H =
M

∆t
+ θA

R =
M

∆t
+ (θ − 1)A
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Disc. temp.
Méthode-θ

(
M 0
0 0

)(
v̇
ṗ

)
+

(
A G
D 0

)(
v
p

)
=

(
Mg
0

)

En incorporant la contrainte d’incompressiblilité ainsi que la pression
correspondante au temps n+ 1, on a(

H G
D 0

)(
ṽ
p̃

)(n+1)

=

(
f̃
0

)(n+1)

où le second membre est donné par

f̃ (n+1) = Rṽ(n) + (1− θ)Mg(n) + θMg(n+1)
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Découplage vitesse-pression
Méthode directe d’Uzawa

Hṽ(n+1) + Gp̃(n+1) = f̃(n+1)

Dṽ(n+1) = 0

En multipliant les équations de quantité de mouvement discrètes par
DH−1, on obtient une équation pour la pression

D

= I︷ ︸︸ ︷
H−1Hṽ(n+1)︸ ︷︷ ︸

= 0

+DH−1G︸ ︷︷ ︸
≡ U

p̃(n+1) = DH−1f̃ (n+1)︸ ︷︷ ︸
≡ ṽ∗

On peut écrire ces équations sous la forme triangulaire supérieure H G 0
0 U −D
0 0 H

 ṽ(n+1)

p̃(n+1)

ṽ∗

 =

 f̃
0

f̃

(n+1)
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Découplage v-p
Méthode directe d’Uzawa

 H G 0
0 U −D
0 0 H

 ṽ(n+1)

p̃(n+1)

ṽ∗

 =

 f̃
0

f̃

(n+1)

La substitution inverse pour ce système donne la méthode d’Uzawa

Hṽ∗ = f̃ (n+1)

Up̃(n+1) = Dṽ∗

Hṽ(n+1) = f̃ (n+1) −Gp̃(n+1)

avec l’opérateur d’Uzawa donné par

U = DH−1G

• Méthode trop couteuse car elle requiert le calcul de H−1

• Méthode non utilisée en pratique mais qui sert à la compréhension
d’autres méthodes
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Découplage v-p
Méthodes d’approximation

(
H G
D 0

)(
ṽ
p̃

)(n+1)
=

(
f̃
0

)(n+1)

De manière générale, on introduit une approximation du découplage
vitesse-pression en multipliant le gradient de pression par la quantité HQ(

H HQG
D 0

)(
ṽ
p̃

)(n+1)

=

(
f̃
0

)(n+1)

+

(
s̃
0

)(n+1)

avec l’erreur de découplage

s̃(n+1) = (HQ− I)Gp(n+1)

Si Q = H−1 l’erreur de découplage est nulle et on récupère la méthode
d’Uzawa. On cherche donc une approximation telle que

Q ' H−1
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Découplage v-p
Méthodes d’approximation

Hṽ(n+1) + HQGp̃(n+1) = f̃(n+1) + s̃(n+1)

En omettant pour le moment l’erreur de découplage s̃(n+1), l’équation
pour la pression devient

D

= I︷ ︸︸ ︷
H−1Hṽ(n+1)︸ ︷︷ ︸

= 0

+D

= I︷ ︸︸ ︷
H−1HQG︸ ︷︷ ︸
≡ Ũ

p̃(n+1) = DH−1f̃ (n+1)︸ ︷︷ ︸
≡ ṽ∗

On peut écrire ces équations sous la forme triangulaire supérieure H HQG 0

0 Ũ −D
0 0 H

 ṽ(n+1)

p̃(n+1)

ṽ∗

 =

 f̃
0

f̃

(n+1)
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Découplage v-p
Méthodes d’approximation

 I QG I

0 Ũ −D
0 0 H

 ṽ(n+1)

p̃(n+1)

ṽ∗

 =

 0
0

f̃

(n+1)

La substitution inverse pour ce système donne l’algorithme en trois étapes

Hṽ∗ = f̃ (n+1)

Ũp̃(n+1) = Dṽ∗

ṽ(n+1) = ṽ∗ −QGp̃(n+1)

où on a ajouté la troisième équation à la première qu’on a ensuite
multiplié par H−1. Dans ce cas, l’opérateur d’Uzawa approché est donné
par

Ũ = DQG
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Découplage vitesse-pression
Méthodes d’approximation

H = M
∆t

+ θA

La matrice de la méthode-theta peut s’écrire

H =
M

∆t
− K︸︷︷︸
≡ +θA

= (I−∆tKM−1︸ ︷︷ ︸
≡ X

)
M

∆t

Ainsi, son inverse devient

H−1 = ∆tM−1(I−∆tX)−1

= ∆tM−1
∞∑
k=1

(∆tX)k−1

où la série de Taylor est convergente à condition que le rayon spectral

ρ(∆tX) < 1
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Découplage vitesse-pression
Méthodes d’approximation

K = −θA
X = KM−1

On définit une approximation de l’inverse de H en tronquant la série à
l’ordre r

Qr = ∆tM−1
r∑

k=1

(∆tX)k−1

= ∆tM−1
r∑

k=1

(−∆tθAM−1)k−1

Aux premiers ordres, on obtient ainsi

Q1 = ∆tM−1

Q2 = ∆tM−1 −∆t2M−1θAM−1

Q3 = ∆tM−1 −∆t2M−1θAM−1 + ∆t3M−1(θAM−1)2
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Découplage vitesse-pression
Méthodes d’approximation

K = −θA
X = KM−1

L’ordre de précision de l’approximation est

H−1 =

= Q1︷ ︸︸ ︷
∆tM−1±O(θ1∆t2)

H−1 = ∆tM−1 −∆t2M−1θAM−1 ±O(θ2∆t3)

H−1 = ∆tM−1 −∆t2M−1θAM−1 + ∆t3M−1(θAM−1)2︸ ︷︷ ︸
= Q3

±O(θ3∆t4)

De manière générale, on a

H−1 = Qr ±O(θr∆tr+1)
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Découplage v-p
Méthodes d’approximation

(
H HQG
D 0

)(
ṽ
p̃

)(n+1)
=

(
f̃ + s̃
0

)(n+1)

L’erreur de découplage est donnée par

s̃(n+1)
r = (HQr − I)Gp̃(n+1)

Aux premiers ordres, on obtient ainsi

s̃
(n+1)
1 = (θ∆tAM−1)1Gp̃(n+1) ≈ O(θ∆t)1

s̃
(n+1)
2 = (θ∆tAM−1)2Gp̃(n+1) ≈ O(θ∆t)2

...

s̃(n+1)
r = (θ∆tAM−1)rGp̃(n+1) ≈ O(θ∆t)r
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Découplage v-p
Méthodes d’approximation

s̃
(n+1)
r = (HQr − I)p̃(n+1) = O(θ∆t)r

Qr = ∆tM−1∑r
k=1(−∆tθAM−1)k−1

s̃(n+1)
r ≈ O(θ∆t)r

• L’ordre de l’approximation doit être compatible avec l’ordre de la
méthode d’intégration temporelle

• Si la matrice de masse est facile à inverser, ces méthodes peuvent
être très efficaces

• L’erreur de découplage est non-nulle pour des solutions stationnaires

• Les solutions stationnaires éventuellement atteintes par intégration
temporelle peuvent dépendre du pas de temps
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Découplage v-p
Correction de pression

(
H HQG
D 0

)(
ṽ
p̃

)(n+1)
=

(
f̃ + s̃
0

)(n+1)

En considérant la correction de pression comme nouvelle inconnue(
H HQG
D 0

)(
ṽ(n+1)

p̃(n+1) − p̃(n)

)
=

(
f̃ (n+1) + s̃(n+1)

0

)
on garantit que l’erreur de découplage soit nulle pour une solution
stationnaire puisque

s̃(n+1)
r = (HQr − I)G(p̃(n+1) − p̃(n))
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Découplage vitesse-pression
Méthodes d’approximation avec correction de pression

Etant donné que
p̃(n+1) − p̃(n) = O(∆t),

l’ordre temporel est augmenté d’une unité. Ainsi,

s̃
(n+1)
1 = (θ∆tAM−1)1G

= O(∆t)︷ ︸︸ ︷
(p̃(n+1) − p̃(n)) ≈ O(θ1∆t1+1)

s̃
(n+1)
2 = (θ∆tAM−1)2G(p̃(n+1) − p̃(n)) ≈ O(θ2∆t2+1)

...

s̃(n+1)
r = (θ∆tAM−1)rG(p̃(n+1) − p̃(n)) ≈ O(θr∆tr+1)
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