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Solutions VI

1 Equation d’advection instationnaire

1.1 Analyse de stabilité linéaire continue

Pour déterminer le caractère d’une solution d’équilibre de l’équation d’advection, on calcule tout d’abord
l’opérateur spatial linéarisé

L(u, u′) =
∂A

∂u

∣∣∣∣
u

(u′) = c ∂xu
′. (1)

Dans ce cas particulier, il est égal à l’opérateur spatial puisque ce dernier est linéaire. L’équation
d’évolution de la perturbation s’écrit donc

∂tu
′ + c ∂xu

′ = 0. (2)

Avec une solution de la forme u′(x, t) = û ei(kx−ωt), on obtient la relation de dispersion classique

ω = ck. (3)

Etant donné que
Im(ω) = 0, ∀k, (4)

toute solution d’équilibre est neutre, c’est-à-dire que toute perturbation n’est ni amplifiée, ni atténuée,
mais seulement advectée.

1.2 Analyse de stabilité linéaire discrète

Pour effectuer une analyse de stabilité linéaire discrète, on doit résoudre le problème aux valeurs propres
généralisé

λ̃(k)Mû(k) + Lû(k) = 0, (5)

avec la matrice de masse M et la matrice de discrétisation de l’opérateur spatial linéarisé L. Etant
donné que la matrice de masse est identité (méthode de colocation), il se réduit à un problème aux
valeurs propres standard

Lû(k) = −λ̃(k)û(k), (6)

où L dépend du schéma de discrétisation spatiale utilisé.

1. Si on utilise un schéma aux différences finies centré du second ordre, la matrice de discrétisation
de l’opérateur spatial linéarisé est donnée par

Lo =
c

2h



0 +1 −1
. . .

. . .
. . .

−1 0 +1
. . .

. . .
. . .

+1 −1 0

 . (7)
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La matrice Lo étant circulaire, tridiagonale et anti-symétrique, on trouve facilement que

λ̃(k) = − ic

h
sin(ψk) → Re(λ̃(k)) = 0, ∀(c, h). (8)

La neutralité des solutions d’équilibre est donc préservée quel que soit le pas de discrétisation.
Le schéma aux différences finies centré du second ordre est donc absolument consistant pour la
discrétisation spatiale de l’équation d’advection.

2. Si on utilise un schéma aux différences finies Upwind du premier ordre, la matrice de discrétisation
de l’opérateur spatial linéarisé est donnée par

L− =
c

h



+1 0 −1
. . .

. . .
. . .

−1 +1 0
. . .

. . .
. . .

0 −1 +1

 .

Comme L− est circulaire et tridiagonale, on trouve que

λ̃(k) =
c

h
(cos(ψk)− 1− i sin(ψk)) , → Re(λ̃(k)) < 0, ∀(c, h).

La neutralité des solutions d’équilibre est donc perdue quel que soit le pas de discrétisation. Ceci
est dû à la diffusion artificielle introduite par le schéma Upwind du premier ordre. Cette méthode
est donc inconsistante pour la discrétisation spatiale de l’équation d’advection.

1.3 Analyse de stabilité numérique

Pour effectuer une analyse de stabilité numérique, on doit résoudre un problème aux valeurs propres
généralisé de la forme

γ̃(k)Hû(k) = Rû(k). (9)

Si on utilise la méthode-theta pour la discrétisation temporelle, les matrices H et R sont données par

H =
M

∆t
+ θL, (10)

R =
M

∆t
+ (θ − 1)L. (11)

Dans le cas particulier de la méthode d’Euler explicite (θ = 0), et puisque la matrice de masse est
identité, le problème aux valeurs propres généralisé (9) se simplifie sous la forme standard

γ̃(k)û(k) = (I−∆tL)û(k). (12)

1. Si on utilise un schéma aux différences finies centré du second ordre, on trouve que

γ̃(k) = 1− i
c∆t

h︸︷︷︸
= Co

sin(ψk), (13)

avec la nombre de Courant Co qui exprime le rapport entre la vitesse d’advection c et la vitesse
de propagation numérique h/∆t. Pour conserver la neutralité des solutions d’équilibre au niveau
discret, on doit imposer |γ̃(k)| = 1, ce qui implique la restriction sur le pas de temps ∆t = 0. En
d’autres termes, on devrait imposer

Co = 0, (14)

ce qui est bien évidemment impossible pour intégrer dans le temps. Le couplage d’un schéma aux
différences finies centré du second ordre avec la méthode d’Euler explicite pour la discrétisation de
l’équation d’advection est donc une méthode de discrétisation inconsistante.
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2. Si on utilise un schéma aux différences finies Upwind du premier ordre, on trouve que les gains
sont donnés par

γ̃(k) = −Co (cos(ψk)− 1− i sin(ψk))− 1.

Pour conserver la neutralité des solutions d’équilibre au niveau discret, on a donc la restriction

Co = 1.

Le couplage d’un schéma aux différences finies Upwind du premier ordre avec la méthode d’Euler
explicite pour la discrétisation de l’équation d’advection est donc une méthode de discrétisation
conditionellement consistante.
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