EDO
00

000
000

Evolution Stab. lin. continue Stab. lin. discrete Stab. num
0000 [e] [e]e] [e]e)
[e]e] [e] 000 [e]e)

(o] [e]e]

Méthodes de discrétisation en fluides

6. Equation de diffusion instationnaire
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Problemes physiques

Bille sur des montagnes russes. . .

évolution

équilibre instable

équilibre stable

® Probleme d'équilibre

Quelles sont les positions d’équilibre de la bille?

® Probleme d'évolution

Pour des conditions initiales données, comment évolue la position de la bille dans le temps?

® Probléeme de stabilité

Une petite perturbation de la position d'équilibre est-elle amplifiée ou amortie dans le temps?

Références
o]



EDO
00

000
000

Evolution Stab. lin. continue Stab. lin. discrete Stab. num Références

0000 () (e} (e]e] [e]
(o] () [e]e]e} (e]e]
o (e]e]

Problemes physiques

Phénomenes décrits par des équations aux dérivées partielles (EDP)

un probléme d’équilibre

conduit, aprés discrétisation spatiale, a la solution d'un systéme d'équations algébriques

Au =Mf

un probléme d’évolution

conduit, aprés discrétisation spatiale, a la solution d'un systéme d'équations différentielles ordinaires (EDO)

Mu+ Au = Mf

un probléme de stabilité

conduit, aprés discrétisation spatiale, a la solution d’un probléme aux valeurs propres (PVP)

Au =-)\Mu
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Equations différentielles ordinaires

Probleme élémentaire

On consideére le probleme élémentaire

{ it = Au = f(u)

u(to) = Up

dont la solution exacte est
u(t) = up exp(At)
Toute condition initiale s'atténue exponentiellement dans le temps si
Re(M\) <0

Le probleme est alors dit physiquement (ou mathématiquement) stable.
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Equations différentielles ordinaires

Probleme élémentaire
On peut définir le gain

_ ut ) utth e

wtm)y — am ¢ T

qui s'exprime aussi en série de Taylor sous la forme

AL

o o 02

=1
vEIT gty

On a ainsi les domaines de stabilité/neutralité/instabilité

S={zlabs(y)<1}=C"
N={z|abs(y)=1}=C"
I={z|abs(y)>1}=CT
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Eq. différentielles ordinaires

{ = Au= f(u)
Méthode d'Euler explicite

u(tg) = ug

Pour la méthode d'Euler explicite, on utilise la série de Taylor progressive
dans le temps

At? 93y

L At? 93u
() 2! Ot?

At Ou
(n4+1) _ (n) . 22 27 = 7
u ut + o + 3 98

4
T o + O(At?)

t(")

de maniere a établir I'approximation progressive du premier ordre

du
ot

umth) —y() Af 924

2
AU w ael,, TOBY)

t(n)

ox At
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Equations différentielles ordinaires L
v =144+ % + 5 +0(z)
Méthode d'Euler explicite

Avec |'approximation progressive du premier ordre, on obtient

] (n) um+1) _ ()
il = M) o U
At

ce qui s'écrit aussi sous la forme

"t = (14 A = (14 2)"H1a®

=z

dont on déduit le gain approché

gt
Y=—==1+4+2
u(")
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Eq. différentielles ordinaires S={z |abs(y) <1} =C~

z = AAt
Méthode d'Euler explicite =14z
Im(z)
(—1,0) Re(z)

S={z|abs(3) <1} #C"

® [nstabilité numérique pour des probléemes stables si z est hors du
cercle unité centré en (—1,0)

® Instabilité des problemes instables conservée VAt

® Problemes neutres déstabilisés pour un pas de temps non nul
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Equations différentielles ordinaires (1o pum s
u(tp) = ug

Méthode d'Euler implicite

Pour la méthode d’'Euler implicite, on utilise la série de Taylor rétrograde
dans le temps

At Ou
1 ot

At? 9%u

L A3 93y
£(n) 2! Ot2

(n—1) _ (n) _ =y
b b RPN TITE

+ O(Ath)

t(")

de maniere a établir I'approximation rétrograde du premier ordre

du
ot

u™ — (=1 At 92y

A
o N TITE O(At)

t(n)

ox At
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Equations différentielles ordinaires

Méthode d'Euler implicite

Avec |'approximation rétrograde du premier ordre, on obtient

(nt+1) _ y(n)
. _ +1) u u
Uty = Au( ) ~ N
ce qui s'écrit aussi sous la forme
Sty _ () _ u®

1—z (1—gz)nt!
dont on déduit le gain approché

1

'7:71 =14+z-22+22+0(z)
-z
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Eq. différentielles ordinaires Sl et <a) =
z = t
Méthode d’Euler implicite F=1
Im(z)
(1,0) ) Re(z)

S={z|abs(3) <1} #C"~ U

® Stabilité des problémes stables conservée VAt

® Stabilisation numérique pour des problémes instables si z est hors
du cercle unité centré en (+1,0)

® Problemes neutres stabilisés pour un pas de temps non nul
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Equations différentielles ordinaires
Méthode de Crank—Nicolson
En faisant la moyenne des méthodes d'Euler explicite et implicite, on a

a(n+1) _ ) _ é(
At 2

gy it )y

ce qui s'écrit aussi sous la forme
(-3 = 1 i
dont on déduit le gain approché

1+
1—

NN

;5/:

NN
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H 4 . H H S={z|abs 1}y =C~
Eq. différentielles ordinaires felepet) =40
Méthode de Crank—Nicolson 7= 73%

Im(z)

S={z |abs(3) <1} =C"
Re(z)

On a donc la stabilité absolue

S=§

® Stabilité des problémes stables conservée VAt
® |nstabilité des problemes instables conservée VAt

® Neutralité des problemes neutres conservée VAt
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Equations différentielles ordinaires

= Au= f(u)
Méthode-theta

En faisant une combinaison linéaire des méthodes d'Euler explicite et
implicite, on a

a1 _ gn)

iy = ———F—— = (1-0) A 49 Aty
=f@Em) = f@Emn)

La méthode-theta regroupe les schémas d'intégration de

e Euler explicite =10 O(AY)
e Euler implicite 6 =1 O(At)
e Crank—Nicolson 6 =1/2 O(At?)
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Probléme d’'évolution

Discrétisation spatiale - Formulation forte

On considere I'équation de diffusion instationnaire

ou 0%u
E—V@:f, Q:[a7b]

u(x, ) = ug(x)

avec des conditions aux limites périodiques et la solution

’u(w,t) € C*(Q) ‘
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Probléme d’'évolution

Discrétisation spatiale - Formulation intégrale

La formulation intégrale est obtenue par produit scalaire par une fonction
test (pondération). On obtient ainsi

ou 0%u 2
/Q<at—y8x2)-vd1/—/ﬂf-vdx, Vo € L2(Q)
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> A H ) 82 _
Probléme d'évolution Jo Gt —v vds=Jof v
82w | _ Mig1—2uituig 2
[P - O — gl i T il 4 o
Discrétisation spatiale o2 h2 ()

En utilisant les fonctions test de la méthode des différences finies, il vient

0 ok :

du
ot

soit
9%u

—V@X :fi, VZ

Xi 7

Avec une approximation centrée du second ordre, on obtient les
équations semi-discrétes sous forme indicielle

W1 — 205 + Uy
12 h2

=1, Wi

i —
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Probleme d'évolution N
;- p 1T 1
S Mk Ml S

h
Discrétisation spatiale

et sous forme matricielle, on a

Mu + Au = Mf

ou la matrice de masse M = I, et la matrice de discrétisation circulaire
et tridiagonale
-2 +1 +1

+1 -2 +1

+1 +1 -2
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Prob. évolution Ma + Au = Mf
. a(nt1) _g(n) (n (41
Discrétisation temporelle Hymy = at = (=0 7@™) 4 o7@m)

Pour la discrétisation temporelle, on écrit le systéme sous la forme
Mua = Mf — Au = F(u)
Par exemple, en utilisant la méthode-theta, il vient

Ma*th — Ma™

(M) = A (1= O)F (@) + 6F (@)

étant donné que dans ce cas particulier

M = M = const
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Probleme d’évolution F(u) = Mf — Au
a(n+1) _5(n)
U T 0T — 1 - gFal™ 4 eranth

Discrétisation temporelle At ( )

En isolant les termes inconnus a gauche, on obtient le systeme
d'équations algébriques

Hu"t) = Ra™ + (1 — 9)Mf™ 4 omfn+D)

ol les matrices H et R sont données par

M M
H="+0A R="—"+(0-1A
AtJr ’ At ( )

ol on a tenu compte du fait que, dans ce cas particulier,

A = A = const
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Stabilité linéaire continue

Otu+ A(u) = f
Equation linéarisée
On considere la solution d'équilibre perturbée

u(z,t) = u(x) + cu'(x,t), e<1
———
équilibre  perturbation

{

Par un développement limité au premier ordre, on obtient

ow  Oew)
—+

. 0A
5 5 + A(m) +

du

(ew') = f

u

Etant donné que I'équilibre & est solution des équations, I'évolution de la
perturbation est gouvernée par I'équation linéarisée

ou’  0A ,
ot " u), @) =0
———

L(w,u’)
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Stabilité linéaire continue

ou! | p(w,u') =0
Expansion en modes normaux

Puis, en admettant une perturbation de la forme
u'(z,t) =1 elke—wt)
on obtient le probleme aux valeurs propres
;iﬁj/ﬁ + L(mw,0) =0
=

Le critére de stabilité linéaire d'une solution d'équilibre est donc donné
par

Im(w) <0, Vk — Jim [lw'()]] =0, Va/(to)
Re(A\) <0, Vk — Jim [|[w' (t)|| = 0, Va'(to)
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Stabilité linéaire continue

3tu7u8§mu:f

. . . A= —i
Relation de dispersion v

Dans le cas de I'équation de diffusion, I'équation linéarisée s'écrit
! 2 0 _
o' —v o, u =0

Avec une solution de la forme u/(x,t) = i e!x*=“*) on obtient la
relation de dispersion classique

w=—irk? = -—vk?
On a donc stabilité linéaire de toutes les solutions d'équilibre puisque

Im(w) <0, Vk#0
Re(\) <0, Vk#0
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Stabilité linéaire discréte

Probleme aux valeurs propres généralisé

Stab. num

(e]e]
(e]e]

dtu’ + L(w,u’) =0

La discrétisation spatiale des équations linéarisées conduit au systeme

d'équations différentielles ordinaires

Mu +Lu' =0

En admettant une perturbation de la forme

on obtient le probleme aux valeurs propres généralisé

APMGER + Lak®) =0

)

k=1,..

P
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Stabilité linéaire discrete v=Ay
Aip = ;\(k)(;.k
J J

Probleme aux valeurs propres généralisé i =2u= f(u)

Une solution d'équilibre est donc linéairement stable si

Re(A\®) <0, VE — Jim. [Ju’(1)[] = 0, V' (t)
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Stabilité linéaire discréte

Schéma centré du second ordre

Dans le cas de I'équation de diffusion, avec le schéma centré du second

Stab. lin. discréte

(e}
@00
(e]e]

A na®) fLak) = o

Stab. num
[e]e)
[e]e)

M=1

ordre, le probleme aux valeurs propres généralisé se réduit a

ol o est valeur propre de

Li= -\

~—~

=0
-2 +1

+1 -2 +1
+1 +1

+1
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Stabilité linéaire discréte

Schéma centré du second ordre

Comme L est circulaire, symétrique et tridiagonale

a f B

La,g) = | ° o
Lo
B B«

ses valeurs propres sont données par

k-1

*) = +2 =2
o = ot 2B cos(yn), Yk =2m g

Références
o]



EDO Evolution Stab. lin. continue Stab. lin. discréte Stab. num Références
[e]e] 0000 [e] [e]e] [e]e) o]

000 [e]e] [e] ooe [e]e)

000 (o] [e]e]

Stabilité linéaire discréte

Schéma centré du second ordre

Dans ce cas, on a
2v 1%

= P

dont on déduit que

- 2
) — hi’; (cos(tpp) —1) <0, Vu,h >0

La stabilité linéaire des solutions d'équilibre est donc conservée apres
discrétisation quel que soit I'intervalle entre les noeuds de maillage h.
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Stabilité linéaire discréte

Consistance

Consistance absolue. Une méthode de discrétisation est dite
absolument consistante si elle préserve le caractére des solutions
d'équilibre sans restriction sur les parametres de discrétisation.

Consistance conditionnelle. Une méthode de discrétisation est dite
conditionnellement consistante si elle préserve le caractére des solutions
d'équilibre avec restriction sur les parameétres de discrétisation.

Inconsistance. Une méthode de discrétisation est dite inconsistante si,
quels que soient les parameétres de discrétisation, elle ne permet pas de
conserver le caractere des solutions d'équilibre.
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Stabilité linéaire discréte

Consistance

Pour I'équation de diffusion, le schéma aux différences finies centré du
second ordre est absolument consistant puisqu'il conserve la stabilité
linéaire des solutions d'équilibre au niveau semi-discret

- 2
AW = 22 (cos() = 1) <0, Vi h =0

quel que soit I'intervalle entre les noeuds de maillage h.
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Stabilité numérique

Mu’ +Lu’ =0
Probleme aux valeurs propres généralisé

En partant des équations linéarisées semi-discrétes et en utilisant la
méthode-theta, on obtient les équations discrétes suivantes

Hﬁl(’n+1) — Rﬁ/(’n)

ou les matrices H et R sont données par

M
H—A—tJrGL
M
R=——+(-1)L

At
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Stabilité numérique
Ha/ (D) — ra/(m)
Probleme aux valeurs propres généralisé

H étant inversible, on peut démontrer en diagonalisant le systéme que les

gains approchés 7(%) sont donnés par la solution du probleme aux valeurs
propres généralisé

yPOHG® =Ra®, k=1,...,p

Une solution d'équilibre est donc linéairement stable au niveau discret si
les gains approchés

AP <1, VkE — Jim @™ =0, va'®
—00
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e, , . y PR = ra(®)
Stabilité numérique M

M

c ‘ .. At
Schéma centré du second ordre & Euler explicite M
At

+ (6 - DL

Avec la méthode d'Euler explicite (6 = 0), le probleme aux valeurs
propres généralisé devient

FWER = (1 — AtL)E®)

Dans le cas de I'équation de diffusion, avec le schéma centré du second
ordre, on trouve que les gains sont donnés par

;5/(]6) _ QVAt

2 (cos(r) — 1) + 1
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Stabilité numérique

Schéma centré du second ordre & Euler explicite

Pour conserver la stabilité des solutions d'équilibre (|7*)| < 1), on a
donc la restriction

2

h
A il
t<2u

Le couplage d'un schéma aux différences finies centré du second ordre
avec la méthode d'Euler explicite pour la discrétisation de |'équation de
diffusion est donc une méthode de discrétisation conditionnellement
consistante.
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