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Expansion en modes normaux
Relation de dispersion

Analyse de stabilité linéaire discrète
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Problèmes physiques
Bille sur des montagnes russes. . .

équilibre instable

équilibre stable

évolution

• Problème d’équilibre
Quelles sont les positions d’équilibre de la bille?

• Problème d’évolution
Pour des conditions initiales données, comment évolue la position de la bille dans le temps?

• Problème de stabilité
Une petite perturbation de la position d’équilibre est-elle amplifiée ou amortie dans le temps?
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Problèmes physiques
Phénomènes décrits par des équations aux dérivées partielles (EDP)

• un problème d’équilibre
conduit, après discrétisation spatiale, à la solution d’un système d’équations algébriques

Au = Mf

• un problème d’évolution
conduit, après discrétisation spatiale, à la solution d’un système d’équations différentielles ordinaires (EDO)

Mu̇ + Au = Mf

• un problème de stabilité
conduit, après discrétisation spatiale, à la solution d’un problème aux valeurs propres (PVP)

Aû = −λMû
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Equations différentielles ordinaires
Problème élémentaire

On considère le problème élémentaire{
u̇ = λu = f(u)
u(t0) = u0

dont la solution exacte est

u(t) = u0 exp(λt)

Toute condition initiale s’atténue exponentiellement dans le temps si

Re(λ) < 0

Le problème est alors dit physiquement (ou mathématiquement) stable.
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Equations différentielles ordinaires
Problème élémentaire

On peut définir le gain

γ =
u(t(n+1))

u(t(n))
=

u(n+1)

u(n)
= eλ∆t = ez

qui s’exprime aussi en série de Taylor sous la forme

γ = 1 +
z1

1!
+

z2

2!
+

z3

3!
+O(z4)

On a ainsi les domaines de stabilité/neutralité/instabilité

S = { z | abs(γ) < 1} = C−

N = { z | abs(γ) = 1} = C0

I = { z | abs(γ) > 1} = C+
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Eq. différentielles ordinaires
Méthode d’Euler explicite

{
u̇ = λu = f(u)
u(t0) = u0

Pour la méthode d’Euler explicite, on utilise la série de Taylor progressive
dans le temps

u(n+1) = u(n) +
∆t

1!

∂u

∂t

∣∣∣∣
t(n)

+
∆t2

2!

∂2u

∂t2

∣∣∣∣
t(n)

+
∆t3

3!

∂3u

∂t3

∣∣∣∣
t(n)

±O(∆t4)

de manière à établir l’approximation progressive du premier ordre

∂u

∂t

∣∣∣∣
t(n)

=
u(n+1) − u(n)

∆t
−∆t

2!

∂2u

∂t2

∣∣∣∣
t(n)

±O(∆t2)︸ ︷︷ ︸
∝ ∆t
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Equations différentielles ordinaires
Méthode d’Euler explicite

γ = 1+ z1

1!
+ z2

2!
+ z3

3!
+O(z4)

Avec l’approximation progressive du premier ordre, on obtient

u̇|t(n) = λu(n) ' u(n+1) − u(n)

∆t

ce qui s’écrit aussi sous la forme

ũ(n+1) = (1 + λ∆t︸︷︷︸
= z

)ũ(n) = (1 + z)n+1u(0)

dont on déduit le gain approché

γ̃ =
ũ(n+1)

ũ(n)
= 1 + z
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Eq. différentielles ordinaires
Méthode d’Euler explicite

S = { z | abs(γ) < 1 } = C−

z = λ∆t

γ̃ = 1 + z

S̃ = {z | abs(γ̃) < 1} 6= C−

• Instabilité numérique pour des problèmes stables si z est hors du
cercle unité centré en (−1, 0)

• Instabilité des problèmes instables conservée ∀∆t

• Problèmes neutres déstabilisés pour un pas de temps non nul
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Equations différentielles ordinaires
Méthode d’Euler implicite

{
u̇ = λu = f(u)
u(t0) = u0

Pour la méthode d’Euler implicite, on utilise la série de Taylor rétrograde
dans le temps

u(n−1) = u(n) − ∆t

1!

∂u

∂t

∣∣∣∣
t(n)

+
∆t2

2!

∂2u

∂t2

∣∣∣∣
t(n)

− ∆t3

3!

∂3u

∂t3

∣∣∣∣
t(n)

±O(∆t4)

de manière à établir l’approximation rétrograde du premier ordre

∂u

∂t

∣∣∣∣
t(n)

=
u(n) − u(n−1)

∆t
+

∆t

2!

∂2u

∂t2

∣∣∣∣
t(n)

±O(∆t2)︸ ︷︷ ︸
∝ ∆t
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Equations différentielles ordinaires
Méthode d’Euler implicite

γ = 1+ z1

1!
+ z2

2!
+ z3

3!
+O(z4)

Avec l’approximation rétrograde du premier ordre, on obtient

u̇|t(n+1) = λu(n+1) ' u(n+1) − u(n)

∆t

ce qui s’écrit aussi sous la forme

ũ(n+1) =
ũ(n)

1− z
=

u(0)

(1− z)n+1

dont on déduit le gain approché

γ̃ =
1

1− z
= 1 + z− z2 + z3 ±O(z4)
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Eq. différentielles ordinaires
Méthode d’Euler implicite

S = { z | abs(γ) < 1 } = C−

z = λ∆t

γ̃ = 1
1−z

S̃ = {z | abs(γ̃) < 1} 6= C−

• Stabilité des problèmes stables conservée ∀∆t

• Stabilisation numérique pour des problèmes instables si z est hors
du cercle unité centré en (+1, 0)

• Problèmes neutres stabilisés pour un pas de temps non nul
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Equations différentielles ordinaires
Méthode de Crank–Nicolson

En faisant la moyenne des méthodes d’Euler explicite et implicite, on a

u̇|t(n) '
ũ(n+1) − ũ(n)

∆t
=
λ

2
(ũ(n+1) + ũ(n))

ce qui s’écrit aussi sous la forme(
1− z

2

)
ũ(n+1) =

(
1 +

z

2

)
ũ(n)

dont on déduit le gain approché

γ̃ =
1 + z

2

1− z
2
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Eq. différentielles ordinaires
Méthode de Crank–Nicolson

S = { z | abs(γ) < 1 } = C−

z = λ∆t

γ̃ =
1+ z

2
1− z

2

S̃ = {z | abs(γ̃) < 1} = C−

On a donc la stabilité absolue

S̃ = S

• Stabilité des problèmes stables conservée ∀∆t

• Instabilité des problèmes instables conservée ∀∆t

• Neutralité des problèmes neutres conservée ∀∆t
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Equations différentielles ordinaires
Méthode-theta

u̇ = λu = f(u)

En faisant une combinaison linéaire des méthodes d’Euler explicite et
implicite, on a

u̇|t(n) '
ũ(n+1) − ũ(n)

∆t
= (1− θ) λũ(n)︸ ︷︷ ︸

= f(ũ(n))

+ θ λũ(n+1)︸ ︷︷ ︸
= f(ũ(n+1))

La méthode-theta regroupe les schémas d’intégration de

• Euler explicite θ = 0 O(∆t)
• Euler implicite θ = 1 O(∆t)
• Crank–Nicolson θ = 1/2 O(∆t2)
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Problème d’évolution
Discrétisation spatiale - Formulation forte

On considère l’équation de diffusion instationnaire
∂u

∂t
− ν ∂

2u

∂x2
= f, Ω = [a,b]

u(x, t0) = u0(x)

avec des conditions aux limites périodiques et la solution

u(x, t) ∈ C2(Ω)
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Problème d’évolution
Discrétisation spatiale - Formulation intégrale

La formulation intégrale est obtenue par produit scalaire par une fonction
test (pondération). On obtient ainsi∫

Ω

(
∂u

∂t
− ν ∂

2u

∂x2

)
· v dV =

∫
Ω

f · v dx, ∀v ∈ L2(Ω)
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Problème d’évolution
Discrétisation spatiale

∫
Ω

∂u
∂t
− ν ∂2u

∂x2 · v dx =
∫
Ω f · v dx

∂2u
∂x2

∣∣∣∣
xi

=
ui+1−2ui+ui−1

h2 +O(h2)

En utilisant les fonctions test de la méthode des différences finies, il vient∫
Ω

(
∂u

∂t
− ν ∂

2u

∂x2

)
· δ(xi) dx =

∫
Ω

f · δ(xi) dx, ∀i

soit
∂u

∂t

∣∣∣∣
xi

− ν
∂2u

∂x2

∣∣∣∣
xi

= fi, ∀i

Avec une approximation centrée du second ordre, on obtient les
équations semi-discrètes sous forme indicielle

u̇i − ν
ui+1 − 2ui + ui−1

h2
= fi, ∀i



EDO Evolution Stab. lin. continue Stab. lin. discrète Stab. num. Références

Problème d’évolution
Discrétisation spatiale

u̇i − ν
ui+1−2ui+ui−1

h2 = fi

et sous forme matricielle, on a

Mu̇ + Au = Mf

où la matrice de masse M = I, et la matrice de discrétisation circulaire
et tridiagonale

A = − ν

h2



−2 +1 +1
. . .

. . .
. . .

+1 −2 +1
. . .

. . .
. . .

+1 +1 −2


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Prob. évolution
Discrétisation temporelle

Mu̇ + Au = Mf

u̇|
t(n) '

ũ(n+1)−ũ(n)

∆t
= (1− θ)f(ũ(n)) + θf(ũ(n+1))

Pour la discrétisation temporelle, on écrit le système sous la forme

Mu̇ = Mf −Au = F(u)

Par exemple, en utilisant la méthode-theta, il vient

(Mu̇)t(n) '
Mũ(n+1) −Mũ(n)

∆t
= (1− θ)F(ũ(n)) + θF(ũ(n+1))

étant donné que dans ce cas particulier

M(n) = M = const
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Problème d’évolution
Discrétisation temporelle

F(u) = Mf −Au

ũ(n+1)−ũ(n)

∆t
= (1− θ)Fũ(n) + θFũ(n+1)

En isolant les termes inconnus à gauche, on obtient le système
d’équations algébriques

Hũ(n+1) = Rũ(n) + (1− θ)Mf (n) + θMf (n+1)

où les matrices H et R sont données par

H =
M

∆t
+ θA, R =

M

∆t
+ (θ − 1)A

où on a tenu compte du fait que, dans ce cas particulier,

A(n) = A = const



EDO Evolution Stab. lin. continue Stab. lin. discrète Stab. num. Références

Stabilité linéaire continue
Equation linéarisée

∂tu + A(u) = f

On considère la solution d’équilibre perturbée

u(x, t) = u(x)︸ ︷︷ ︸
équilibre

+ εu′(x, t)︸ ︷︷ ︸
perturbation

, ε� 1

Par un développement limité au premier ordre, on obtient

∂u

∂t
+
∂(εu′)

∂t
+A(u) +

∂A

∂u

∣∣∣∣
u

(εu′) = f

Etant donné que l’équilibre u est solution des équations, l’évolution de la
perturbation est gouvernée par l’équation linéarisée

∂u′

∂t
+
∂A

∂u

∣∣∣∣
u

(u′)︸ ︷︷ ︸
L(u,u′)

= 0
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Stabilité linéaire continue
Expansion en modes normaux

∂u′
∂t

+ L(u,u′) = 0

Puis, en admettant une perturbation de la forme

u′(x, t) = û ei(k·x−ωt)

on obtient le problème aux valeurs propres

−iω︸︷︷︸
= λ

û + L(u, û) = 0

Le critère de stabilité linéaire d’une solution d’équilibre est donc donné
par

Im(ω) < 0, ∀k → lim
t→∞

||u′(t)|| = 0, ∀u′(t0)

Re(λ) < 0, ∀k → lim
t→∞

||u′(t)|| = 0, ∀u′(t0)
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Stabilité linéaire continue
Relation de dispersion

∂tu− ν ∂2
xxu = f

λ = −iω

Dans le cas de l’équation de diffusion, l’équation linéarisée s’écrit

∂tu
′ − ν ∂2

xxu
′ = 0

Avec une solution de la forme u′(x, t) = û ei(kx−ωt), on obtient la
relation de dispersion classique

ω = −iνk2, λ = −νk2

On a donc stabilité linéaire de toutes les solutions d’équilibre puisque

Im(ω) < 0, ∀k 6= 0

Re(λ) < 0, ∀k 6= 0
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Stabilité linéaire discrète
Problème aux valeurs propres généralisé

∂tu
′ + L(u,u′) = 0

La discrétisation spatiale des équations linéarisées conduit au système
d’équations différentielles ordinaires

Mu̇′ + Lu′ = 0

En admettant une perturbation de la forme

u′ = û exp(−iω̃︸︷︷︸
= λ̃

t)

on obtient le problème aux valeurs propres généralisé

λ̃(k)Mû(k) + Lû(k) = 0, k = 1, . . . ,p
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Stabilité linéaire discrète
Problème aux valeurs propres généralisé

v̇ = Λ̃v

Λ̃jk = λ̃(k)δjk

u̇ = λu = f(u)

Une solution d’équilibre est donc linéairement stable si

Re(λ̃(k)) < 0, ∀k → lim
t→∞

||u′(t)|| = 0, ∀u′(t0)
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Stabilité linéaire discrète
Schéma centré du second ordre

λ̃(k)Mû(k) + Lû(k) = 0
M = I

Dans le cas de l’équation de diffusion, avec le schéma centré du second
ordre, le problème aux valeurs propres généralisé se réduit à

Lû = −λ̃︸︷︷︸
≡ σ

û

où σ est valeur propre de

L = A = − ν

h2



−2 +1 +1
. . .

. . .
. . .

+1 −2 +1
. . .

. . .
. . .

+1 +1 −2


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Stabilité linéaire discrète
Schéma centré du second ordre

Comme L est circulaire, symétrique et tridiagonale

L(α, β) =


α β β

β
. . .

. . .

. . .
. . . β

β β α


ses valeurs propres sont données par

σ(k) = α+ 2β cos(ψk), ψk = 2π
k − 1

p + 1
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Stabilité linéaire discrète
Schéma centré du second ordre

λ̃Mû + Lû = 0

σ = −λ̃

Dans ce cas, on a

α =
2ν

h2
, β = − ν

h2

dont on déduit que

λ̃(k) =
2ν

h2
(cos(ψk)− 1) ≤ 0, ∀ν, h ≥ 0

La stabilité linéaire des solutions d’équilibre est donc conservée après
discrétisation quel que soit l’intervalle entre les noeuds de maillage h.
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Stabilité linéaire discrète
Consistance

Consistance absolue. Une méthode de discrétisation est dite
absolument consistante si elle préserve le caractère des solutions
d’équilibre sans restriction sur les paramètres de discrétisation.

Consistance conditionnelle. Une méthode de discrétisation est dite
conditionnellement consistante si elle préserve le caractère des solutions
d’équilibre avec restriction sur les paramètres de discrétisation.

Inconsistance. Une méthode de discrétisation est dite inconsistante si,
quels que soient les paramètres de discrétisation, elle ne permet pas de
conserver le caractère des solutions d’équilibre.
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Stabilité linéaire discrète
Consistance

Pour l’équation de diffusion, le schéma aux différences finies centré du
second ordre est absolument consistant puisqu’il conserve la stabilité
linéaire des solutions d’équilibre au niveau semi-discret

λ̃(k) =
2ν

h2
(cos(ψk)− 1) ≤ 0, ∀ν, h ≥ 0

quel que soit l’intervalle entre les noeuds de maillage h.
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Stabilité numérique
Problème aux valeurs propres généralisé

Mu̇′ + Lu′ = 0

En partant des équations linéarisées semi-discrètes et en utilisant la
méthode-theta, on obtient les équations discrètes suivantes

Hũ′(n+1) = Rũ′(n)

où les matrices H et R sont données par

H =
M

∆t
+ θL

R =
M

∆t
+ (θ − 1)L
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Stabilité numérique
Problème aux valeurs propres généralisé

Hũ′(n+1) = Rũ′(n)

H étant inversible, on peut démontrer en diagonalisant le système que les
gains approchés γ̃(k) sont donnés par la solution du problème aux valeurs
propres généralisé

γ̃(k)Hû(k) = Rû(k), k = 1, . . . ,p

Une solution d’équilibre est donc linéairement stable au niveau discret si
les gains approchés

|γ̃(k)| < 1, ∀k → lim
t→∞

||ũ′(n)|| = 0, ∀ũ′(0)
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Stabilité numérique
Schéma centré du second ordre & Euler explicite

γ̃(k)Hû(k) = Rû(k)

M = I

H = M
∆t

+ θL

R = M
∆t

+ (θ − 1)L

Avec la méthode d’Euler explicite (θ = 0), le problème aux valeurs
propres généralisé devient

γ̃(k)û(k) = (I−∆tL)û(k)

Dans le cas de l’équation de diffusion, avec le schéma centré du second
ordre, on trouve que les gains sont donnés par

γ̃(k) =
2ν∆t

h2
(cos(ψk)− 1) + 1
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Stabilité numérique
Schéma centré du second ordre & Euler explicite

Pour conserver la stabilité des solutions d’équilibre (|γ̃(k)| < 1), on a
donc la restriction

∆t <
h2

2ν

Le couplage d’un schéma aux différences finies centré du second ordre
avec la méthode d’Euler explicite pour la discrétisation de l’équation de
diffusion est donc une méthode de discrétisation conditionnellement
consistante.
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