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Section de génie mécanique, CH-1015 Lausanne

Jeudi 18 avril 2024
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Turbulence en mécanique des fluides
Simulation numérique directe
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Introduction
Equations de Navier–Stokes - Formulation dimensionnelle

On considère les équations de Navier–Stokes

ρ(

[ ρVT ]︷︸︸︷
∂tv +

[
ρV2

L

]︷ ︸︸ ︷
v ·∇v) =

[P
L ]︷ ︸︸ ︷
−∇p+

[µV
L2 ]︷ ︸︸ ︷

µ∇2v

∇ · v︸ ︷︷ ︸
[V
L ]

= 0

En utilisant les variables adimensionnelles, on a(
ρV

T

)
∂t̂v̂ +

(
ρV2

L

)
v̂ · ∇̂v̂ = −

(
P

L

)
∇̂p̂+

(
µV

L2

)
∇̂2v̂(

V

L

)
∇̂ · v̂ = 0

x = L x̂

t = T t̂

v = V v̂

p = P p̂
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Introduction
Equations de Navier–Stokes - Formulations adimensionnelles

• avec le temps d’advection T = L
V , on obtient

∂t̂v̂ + v̂ · ∇̂v̂ = −∇̂p̂+ Re−1∇̂2v̂

∇̂ · v̂ = 0

• avec le temps de diffusion T = ρL2

µ , on obtient

∂t̂v̂ + Re v̂ · ∇̂v̂ = −∇̂p̂+ ∇̂2v̂

∇̂ · v̂ = 0

où le nombre de Reynolds Re =
ρVL

µ



Introduction Systèmes linéaires Méthodes directes Méthodes itératives Références

Introduction
Turbulence en mécanique des fluides

L L, r L, r1, r2 L, r1, r2, . . . , λ

Marmottant et al., 2004 Hoath, 2006 Marmottant et al., 2004 Genève, 1886
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Introduction
Turbulence en mécanique des fluides

On peut monter que la gamme d’échelles spatiales

γx =
L

λ
∝ Re3/4

Pour simuler toutes les échelles d’un écoulement, le
nombre d’inconnues

p ∝ γ3x ∝ Re9/4

L, r1, r2, . . . , λ

Re ≈ 107
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Introduction
Simulation numérique directe

Lorsqu’on discrétise les équations de Navier–Stokes, on obtient un
système d’équations algébriques de taille p

Au = Mf

• coût de stockage
Matrices pleines (p. ex. méthodes spectrales)

∝ p2 ∝ Re18/4

• coût de calcul
Solution avec la méthode d’élimination de Gauss

∝ p3 ∝ Re27/4
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Introduction
Simulation numérique directe - Défis

1. Diminution du coût de stockage
• Stockage morse

• Matrices non construites (on calcule seulement l’action d’une matrice sur un vecteur)

2. Diminution du coût de calcul
• Méthodes de résolution de systèmes algébriques

• Méthodes de discrétisation spatiale, et d’intégration temporelle

3. Diminution du temps de calcul
• Parallélisation des algorithmes

• Amélioration des calculateurs

4. Modélisation de la turbulence1

• Reynolds-Averaged Numerical Simulation (RANS)

• Large-Eddy Simulation (LES)

1i.e. diminution du nombre d’échelles calculées
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Systèmes d’équations linéaires
Définitions

On considère le système de p équations à p inconnues de la forme

p∑
j=1

Aijxj = bi, i = 1, . . . ,p

avec les coefficients Aij et bi constants. On peut écrire ce système sous
la forme

Ax = b

avec

A ∈ Rp×p

x, b ∈ Rp
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Systèmes d’équations linéaires
Définitions

La solution x existe ssi ces trois conditions équivalentes sont satisfaites

• A est inversible, i.e.
det(A) 6= 0

• Les vecteurs colonne de A sont linéairement indépendants, i.e.

rk(A) = p

• Le système homogène admet seulement la solution nulle, i.e.

ker(A) = {x ∈ Rp | Ax = 0} = 0
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Systèmes d’équations linéaires
Méthodes de résolution

Méthodes directes

• Solution en un nombre fini d’étapes

• Complexité généralement ∝ p3

Méthodes itératives

• Solution en un nombre infini d’étapes

• Complexité par étape généralement ∝ p2

• Utilité si le nombre d’étapes pour la convergence < p
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Systèmes d’équations linéaires
Rappels

On rappelle les définitions suivantes

• Valeurs et vecteurs propres de A

Ax̂(k) = λ(k)x̂(k), k = 1, . . . ,p

• Rayon spectral A

ρ(A) = max
k
|λ(k)|, k = 1, . . . ,p
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Systèmes d’équations linéaires
Rappels

ainsi que les propriétés

• A est définie positive si

vTAv > 0, ∀v ∈ Rp, v 6= 0

• A est diagonale dominante stricte par ligne si

|Aii| >
p∑
j=1

j 6=i

|Aij |, ∀i

• A est symétrique si
Aij = Aji, ∀i, j
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Méthodes directes
Systèmes triangulaires inférieurs

On considère le système triangulaire inférieur L11 0 0
L21 L22 0
L31 L32 L33

 x1

x2

x3

 =

 b1

b2

b3


Puisque le système est par hypothèse inversible, on a Lii 6= 0. Ainsi, la
solution s’écrit

x1 =
b1

L11

x2 =
1

L22
(b2 − L21x1)

x3 =
1

L33
(b3 − L31x1 − L32x2)
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Méthodes directes
Systèmes triangulaires inférieurs

De manière générale, la solution du système triangulaire inférieur

Lx = b

est donnée par l’algorithme de substitution directe

x1 =
b1

L11

xi =
1

Lii
(bi −

i−1∑
j=1

Lijxj), i = 2, . . . ,p

dont la complexité algorithmique est ∝ p2 à cause de la somme allant de
1 jusqu’à j − 1.
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Méthodes directes
Systèmes triangulaires supérieurs

De manière analogue, la solution du système triangulaire supérieur

Ux = b

est donnée par l’algorithme de substitution inverse

xp =
bp

Upp

xi =
1

Uii
(bi −

p∑
j=i+1

Uijxj), i = p− 1, . . . , 1

dont la complexité algorithmique est ∝ p2 à cause de la somme allant de
i+ 1 jusqu’à p.
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Méthodes directes
Méthode d’élimination de Gauss

Ax = b

Pour une matrice A non-triangulaire, on construit les suites de matrices
et de seconds membres

A = {

≡ A︷︸︸︷
A(1),A(2), . . . ,A(k), . . . ,

≡ U︷︸︸︷
A(p)}

B = {b(1)︸︷︷︸
≡ b

,b(2), . . . ,b(k), . . . ,b(p)︸︷︷︸
≡ b̂

}

telles que le système devienne triangulaire supérieur à l’étape p

Ux = b̂

et puisse être résolu par substitution inverse. La complexité totale est
∝ p3.
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Méthodes directes
Méthode d’élimination de Gauss

On a donc par définition

A(1) = A, b(1) = b

Les seconds termes de la suite sont définis par

A
(2)
ij = A

(1)
ij −m

(1)
i A

(1)
1j , i, j = 2, . . . ,p

b
(2)
i = b

(1)
i −m

(1)
i b

(1)
1 , i = 2, . . . ,p

où le multiplicateur

m
(1)
i =

A
(1)
i1

A
(1)
11

, i = 2, . . . ,p
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Méthodes directes
Méthode d’élimination de Gauss

Sous forme matricielle, les seconds termes s’écrivent

A(2) =


A

(1)
11 A

(1)
12 . . . A

(1)
1p

0 A
(2)
22 . . . A

(2)
2p

...
...

...

0 A
(2)
p2 . . . A

(2)
pp

 , b(2) =


b
(1)
1

b
(2)
2
...

b
(2)
p


On a donc éliminé la partie inférieure de la première colonne de A.
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Méthodes directes
Méthode d’élimination de Gauss

On définit ainsi la suite de systèmes

A(k)x = b(k), 1 ≤ k ≤ p

qui s’obtient par récurrence avec

A
(k+1)
ij = A

(k)
ij −m

(k)
i A

(k)
kj , i, j = k + 1, . . . ,p

b
(k+1)
i = b

(k)
i −m

(k)
i b

(k)
k , i = k + 1, . . . ,p

où le multiplicateur

m
(k)
i =

A
(k)
ik

A
(k)
kk

, i = k + 1, . . . ,p
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Méthodes directes
Méthode d’élimination de Gauss

Sous forme matricielle, les k-ièmes termes s’écrivent

A
(k)

=



A
(1)
11 A

(1)
12 . . . . . . . . . A

(1)
1p

0 A
(2)
22 A

(2)
2p

.

.

.
. . .

.

.

.

0 . . . 0 A
(k)
kk

. . . A
(k)
kp

.

.

.

.

.

.

.

.

.

.

.

.

0 . . . 0 A
(k)
pk

. . . A
(k)
pp


, b

(k)
=



b
(1)
1

b
(2)
2

.

.

.

b
(k)
k

.

.

.

b
(k)
p



On a donc éliminé la partie inférieure des k − 1 premières colonne de A.
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Méthodes directes
Méthode d’élimination de Gauss

Ax = b

Ux = b̂

A l’étape p, on obtient donc le système triangulaire supérieur recherché

A(p) = U, b(p) = b̂

qui s’écrit explicitement sous la forme

U =



A
(1)
11 A

(1)
12 . . . . . . A

(1)
1p

0 A
(2)
22 A

(2)
2p

.

.

.
. . .

. . .
.
.
.

.

.

.
. . .

. . .
.
.
.

0 . . . . . . 0 A
(p)
pp


, b̂ =



b
(1)
1

b
(2)
2

.

.

.

.

.

.

b
(p)
p



et qui peut être résolu par substitution inverse.
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Méthodes directes
Méthode d’élimination de Gauss

La méthode de Gauss est applicable ssi les pivots

A
(k)
kk 6= 0

Cette condition est satisfaite si

• A est diagonale dominante par ligne

• A est diagonale dominante par colonne

• A est symmétrique et définie positive

Dans les autres cas, on peut utiliser la méthode de Gauss avec
changement de pivot.
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Méthodes directes
Factorisation LU

En factorisant la matrice A en partie triangulaire inférieure L et
supérieure U

Ax = L U x︸︷︷︸
= y

= b

la résolution du système d’équations se ramène à la résolution successive
des deux systèmes triangulaires

Ly = b

Ux = y

par substitution directe et inverse.
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Méthodes directes
Factorisation LU

Les matrices triangulaires sont composées des multiplicateurs, par
exemple

L =



1 0 . . . . . . 0

m
(1)
2 1

.

.

.

.

.

. m
(2)
3

. . .
.
.
.

.

.

.

.

.

.
. . . 0

m
(1)
p m

(2)
p . . . m

(p−1)
p 1



Cette méthode est ainsi équivalente à celle de Gauss en termes de
complexité algorithmique.



Introduction Systèmes linéaires Méthodes directes Méthodes itératives Références

Méthodes directes
Méthode de Thomas

Dans le cas ou la matrice A est tridiagonale, i.e.

A =



α1 γ1

β2

. . .
. . .

. . .
. . . γp−1
βp αp



la factorisation LU prend la forme

L =



1

L2

. . .

. . .
. . .

Lp 1

 , U =



U1 γ1

. . .
. . .

. . . γp−1
Up


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Méthodes directes
Méthode de Thomas

Pour la matrice triangulaire supérieure, on a

U1 = α1

Ui = αi − Liγi−1, i = 2, . . . ,p

et pour la matrice triangulaire inférieure

Li =
βi

Ui−1
, i = 2, . . . ,p
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Méthodes directes
Méthode de Thomas

Ly = b

Ux = y

Pour la résolution des systèmes triangulaires, on applique les relations de
substitution directe simplifiées

y1 = b1, yi = bi − Liyi−1, i = 2, . . . ,p

puis inverse

xp =
yp

Up
, xi =

1

Ui
(yi − γixi+1), i = p− 1, . . . , 1

dont la complexité algorithmique est ∝ p
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Méthodes itératives
Historique

Pour résoudre l’équation de diffusion{
∇2u = f, x ∈ Ω ⊂ R3

u = 0 sur ∂Ω

avec des différences finies centrées du second ordre et p = p3
i points de

colocation, voici quelques algorithmes ainsi que leur complexité

Elimination de Gauss (1947) ∝ p7
i

Gauss-Seidel sous-optimal (1954) ∝ 8p5
i

Gauss-Seidel optimal (1960) ∝ 8p4
i log(pi)

Multigrille (1981) ∝ 30p3
i log(pi)
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Méthodes itératives
Définition

Ax = b

A la place de construire une suite de systèmes équivalents (méthode
directe), pour une méthode itérative, on construit la suite de vecteurs

X = {x(0),x(1), . . . ,x(k), . . .}

Cette suite est dite convergente si

lim
k→∞

x(k) = x, ∀x(0)
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Méthodes itératives
Définition

Ax = b

On définit l’erreur à l’itération k

e(k) = x(k) − x

• L’erreur ne peut pas être calculée dans la pratique puisqu’on ne
connâıt pas a priori la solution du système.

• L’erreur ne doit pas être cofondue avec le résidu

r(k) = b−Ax(k)

qui peut être calculé à chaque itération.
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Méthodes itératives
Définition

Ax = b

On considère la méthode itérative suivante

x(0) donné

x(k+1) = Bx(k) + f , k > 0

avec B la matrice d’itération. La méthode est consistante si

x = Bx + f

ce qui peut s’écrire sous la forme

f = (I−B)x
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Méthodes itératives
Définition

e(k) = x(k) − x

x(k+1) = Bx(k) + f

f = (I − B)x

En considérant une méthode consistante, l’erreur à l’itération k+ 1 s’écrit

e(k+1) = x(k+1) − x

= Bx(k) + f − x

= Bx(k) + (I−B)x− x

= Be(k)

En procédant par récurrence, on obtient facilement

e(k+1) = Bke(0)
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Méthodes itératives
Définition

x(k+1) = Bx(k) + f

e(k+1) = Bke(0)

Effectuons le changement de variable suivant

= e(k+1)︷ ︸︸ ︷
Vε(k+1) = B

= e(k)︷ ︸︸ ︷
Vε(k)

Si on choisit V telle qu’elle diagonalise B, on a le système découplé

ε(k+1) = V−1BVε(k) = Λε(k)

où Λ est la matrice des valeurs propres de B. On a donc par récurrence
et sous forme indicielle

ε
(k+1)
i = λki ε

(0)
i
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Méthodes itératives
Définition

e(k) = x(k) − x

e(k+1) = Bke(0)

Ainsi, la condition sur le rayon spectral de la matrice d’itération

ρ(B) < 1

implique la convergence

lim
k→∞

e(k+1) = lim
k→∞

Bke(0) = 0, ∀x(0)

le taux de convergence asymptotique étant donné par

κ = − log ρ(B)
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Méthodes itératives
Définition

De manière générale, les méthodes itératives peuvent s’écrire sous la
forme

x(0) = g(0)(A,b)

x(k+1) = g(k)(A,b,x(k),x(k−1), . . . ,x(k−s)), k ≥ s

On définit les propriétés suivantes

• s est l’ordre de la méthode

• Si g(k) est indépendant de k, la méthode est dite stationnaire

• Si g(k) dépend linéairement des x(i), la méthode est linéaire
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Méthodes itératives
Méthodes linéaires

e(k) = x(k) − x

x(k+1) = Bx(k) + f

En décomposant la matrice du système sous la forme

A = P−N

et en définissant la méthode itérative linéaire comme

x(0) donné

Px(k+1) = Nx(k) + b, k ≥ 0

la consistance est garantie et on a

B = P−1N = I−P−1A

f = P−1b
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Méthodes itératives
Méthodes linéaires

Ax = b

(I − B)x = f

B = I − P−1A

f = P−1b

Ainsi, la relation de consistance devient

(+I−I + P−1A︸ ︷︷ ︸
= −B

)x = P−1b︸ ︷︷ ︸
= f

et se réduit sous la forme du système préconditionné

P−1Ax = P−1b

On résoud donc le système préconditionné dont la solution est identique
à celle du système original pourvu que le préconditioneur à gauche P soit
inversible.
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Méthodes itératives
Méthodes linéaires

Px(k+1) = Nx(k) + b

x(k+1) = Bx(k) + f

A = P − N

En utilisant le résidu r(k) = b−Ax(k), on peut aussi écrire la méthode
sous la forme

Px(k+1) = (A + N︸ ︷︷ ︸
= P

)x(k) + r(k)

Puis, en divisant par P, on obtient

x(k+1) = x(k) + P−1r(k)

On définit en outre la direction de descente

z(k) = P−1r(k)
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Méthodes itératives
Méthodes linéaires

Ax = b

x(k+1) = x(k) + P−1r(k)

r(k) = b − Ax(k)

Pz(k) = r(k)

Par exemple, on peut choisir näıvement

P = A

Dans ce cas, l’itération s’écrit

x(k+1) = x(k) + A−1r(k)

= x(k) + A−1b− x(k) = x, ∀x(k)

• On a convergence en une seule itération mais le coût est celui du
problème initial puisqu’on doit résoudre Az(k) = r(k).

• Il faut choisir un préconditionneur plus facile à inverser et qui
permette quand même de converger en peu d’itérations.
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Méthodes linéaire de Jacobi

x(k+1) = x(k) + P−1r(k)

r(k) = b − Ax(k)

Pour la méthode de Jacobi, le préconditioneur est choisi comme la
diagonale de A

P ≡ ω−1D, Dij = Aijδij

où ω est un paramètre de sous- ou sur-relaxation qui permet de modifier
les propriétés de convergence. La méthode de Jacobi est donc définie par
l’itération

x(k+1) = x(k) + (ω−1D︸ ︷︷ ︸
≡ P

)−1r(k)

Le coût de l’itération de Jacobi est donc ∝ p1.
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Méthodes itératives
Méthodes linéaire de Gauss-Seidel

x(k+1) = x(k) + P−1r(k)

r(k) = b − Ax(k)

Pour la méthode de Gauss-Seidel, le préconditioneur est choisi comme la
partie triangulaire inférieure de A

P ≡ ω−1D−E, Eij =

{
−Aij i > j

0 i ≤ j

La méthode de Gauss-Seidel est donc définie par l’itération

x(k+1) = x(k) + (ω−1D−E︸ ︷︷ ︸
≡ P

)−1r(k)

Le coût de l’itération de Gauss-Seidel est donc ∝ p2. On espère donc
faire moins d’itérations qu’avec la méthode de Jacobi.
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Méthodes itératives
Méthodes linéaires - Résultats de convergence

• Pour A diagonale dominante stricte et ω = 1, les méthodes de
Jacobi et de Gauss-Seidel sont convergentes

• Pour A symétrique et définie positive, la méthode de Jacobi
converge si

0 < ω <
2

ρ(D−1A)

• Pour A tridiagonale, symétrique et définie positive, on a

ρ(BGS) = ρ2(BJ)

c’est-à-dire que la méthode de Gauss-Seidel converge plus
rapidement que la méthode de Jacobi
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Méthodes itératives
Méthodes linéaires - Résultats de convergence

• Sans hypothèses sur A, les méthodes de Jacobi et de Gauss-Seidel
ne peuvent être convergentes que pour

0 < ω < 2

• Pour A diagonale dominante stricte, la convergence de la méthode
de Gauss-Seidel est assurée si

0 < ω < 1
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Critères d’arrrêt

r(k) = b − Ax(k)

z(k) = P−1r(k)

• Nombre d’itérations
k ≥ M

où M est un nombre d’itérations maximal fixé

• Convergence

||P−1r(k)||
||P−1b||

≤ τ

où τ est une tolérance fixée
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Méthodes de Richardson

B = I − P−1A

x(k+1) = x(k) + P−1r(k)

• Méthode de Richardson stationnaire

x(k+1) = x(k) + αP−1r(k), k ≥ 0

• Méthode de Richardson instationnaire

x(k+1) = x(k) + α(k)P−1r(k), k ≥ 0

• Matrice d’itération de Richardson

R = I− α(k)P−1A
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Méthodes itératives
Méthodes de Richardson

1. Résoudre le système linéaire

Pz(k) = r(k)

2. Calculer le paramètre d’accélération

α(k) = f(z(k))

3. Mettre à jour la solution

x(k+1) = x(k) + α(k)z(k)

4. Mettre à jour le résidu

r(k+1) = r(k) − α(k)Az(k)
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Méthodes itératives
Méthodes de Richardson - Méthode du gradient

Ax = b

On considère la forme quadratique

Φ(y) =
1

2
yTAy − yTb

Pour des matrices symétriques, le gradient est donné par

∇Φ(y) =
1

2
(AT + A)y − b = Ay − b

Ainsi
∇Φ(y) = 0 → y = x

On doit donc résoudre un problème de minimisation.
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Méthodes itératives
Méthodes de Richardson - Méthode du gradient

∇Φ(y) = Ay − b

x(k+1) =
x(k) + α(k)P−1r(k)

z(k) = P−1r(k)

• Direction de descente
Méthode de la plus forte pente (gradient)

z(k) = −∇Φ(x(k)) = b−Ax(k) = r(k)

P = I

• Paramètre d’accélération

∂

∂α(k)
Φ(x(k+1)) = 0 → α(k) =

r(k)
T

r(k)

r(k)TAr(k)
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Méthodes itératives
Méthode Richardson (gradient)

1. Résoudre le système linéaire Pz(k) = r(k)

2. Calculer le paramètre d’accélération

α(k) = f(z(k))

3. Mettre à jour la solution

x(k+1) = x(k) + α(k)z(k)

4. Mettre à jour le résidu

r(k+1) = r(k) − α(k)Az(k)

La méthode du gradient est ainsi donnée par l’algorithme

1. P = I → z(k) = r(k)

2. α(k) =
r(k)

T

r(k)

r(k)TAr(k)

3. x(k+1) = x(k) + α(k)z(k)

4. r(k+1) = r(k) − α(k)Az(k)

qui est un cas particulier des méthodes de Richardson.
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Méthodes itératives
Méthodes de Richardson

• Méthode du gradient

α(k) =
r(k)

T

r(k)

r(k)TAr(k)
, P = I

• Méthode linéaire de Jacobi

α(k) = 1, P = ω−1D

• Méthode linéaire de Gauss-Seidel

α(k) = 1, P = ω−1D−E
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