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Introduction

Equations de Navier—Stokes - Formulation dimensionnelle

On considere les équations de Navier—Stokes

= [57] m [8)
/5? —N —~

p( - Vu) = —Vp +uViv
v

)
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%]

En utilisant les variables adimensionnelles, on a
pV . pV2\ . o P\ o . VY oo
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Introduction

Equations de Navier—Stokes - Formulations adimensionnelles
® avec le temps d’'advection T = % on obtient

O +0-Vo=—-Vp+Re 'V

V.-5=0

S
\

2
® avec le temps de diffusion T = %, on obtient

0 +Rev Vo =—-Vp+ V%
V.9=0
pVL

ou le nombre de Reynolds | Re
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Introduction
Turbulence en mécanique des fluides
L L,r L,rq, 1o L,ry,ro,.. .0 A

Marmottant et al., 2004

Hoath, 2006
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Introduction

Turbulence en mécanique des fluides

On peut monter que la gamme d'échelles spatiales

L
'y,C:XocRe?’/4

Pour simuler toutes les échelles d'un écoulement, le
nombre d'inconnues

poc'yi’ocReg/4

N
0
i)
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Introduction

Simulation numérique directe

Lorsqu'on discrétise les équations de Navier-Stokes, on obtient un
systeme d’'équations algébriques de taille p

Au = Mf

® colit de stockage ® colit de calcul

Matrices pleines (p. ex. méthodes spectrales) Solution avec la méthode d’élimination de Gauss

x p? Rel8/4 x p? o Re27/4
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Introduction

Simulation numérique directe - Défis

1. Diminution du cofit de stockage
® Stockage morse

® Matrices non construites (on calcule seulement I'action d'une matrice sur un vecteur)

2. Diminution du colit de calcul
® Méthodes de résolution de systemes algébriques

® Méthodes de discrétisation spatiale, et d'intégration temporelle

3. Diminution du temps de calcul
® Parallélisation des algorithmes

® Amélioration des calculateurs

4. Modélisation de la turbulence!
® Reynolds-Averaged Numerical Simulation (RANS)
® Large-Eddy Simulation (LES)

i e. diminution du nombre d’échelles calculées
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Systemes d’'équations linéaires

Définitions
On considere le systeme de p équations a p inconnues de la forme
P
E Ainj:bi, 221,,p
Jj=1

avec les coefficients A;; et b; constants. On peut écrire ce systeme sous
la forme

avec

A € RP*P
x, b € RP



Introduction Systémes linéaires

Méthodes directes Méthodes itératives Références
[e]e] oe 000 o] o]
[e]e] o] 0000000 0000000
[o]e] [o]e] [e]e] 00000000
000 o]
000000

Systemes d’'équations linéaires

Définitions
La solution x existe ssi ces trois conditions équivalentes sont satisfaites

® A est inversible, i.e.
det(A) #0

® |es vecteurs colonne de A sont linéairement indépendants, i.e.
rk(A) =p
® |e systtme homogene admet seulement la solution nulle, i.e.

ker(A) ={xc€RP|Ax=0}=0
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Systemes d’'équations linéaires

Méthodes de résolution

Méthodes directes

® Solution en un nombre fini d'étapes

e Complexité généralement ox p>

Méthodes itératives
® Solution en un nombre infini d'étapes
e Complexité par étape généralement o p?

® Utilité si le nombre d'étapes pour la convergence < p
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Systemes d’'équations linéaires
Rappels

On rappelle les définitions suivantes
® Valeurs et vecteurs propres de A
AR = \Fx®) =1
® Rayon spectral A

p(A) = ml?x|)\(k)|, k=1,...
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Systemes d’'équations linéaires
Rappels

ainsi que les propriétés
® A est définie positive si
vIAv >0, YweRP, v#£0

® A est diagonale dominante stricte par ligne si

P
|Asi| > Z |Aij, Vi

j=1

J#i

® A est symétrique si
Azj = Aj’ia VZL]
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Méthodes directes
Systémes triangulaires inférieurs

On considere le systeme triangulaire inférieur

L11 0 0 X1 bl
Ly L O X2 | =1 b2
L3 L3z Lss X3 bs

Puisque le systéme est par hypothése inversible, on a L;; # 0. Ainsi, la

solution s'écrit

by
X] = —
T Ly
1
Xg = Lop —(bg — Loix1)
1
x3 = — (b3 — Laix1 — L3oxo)

IJSd
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Méthodes directes

Systémes triangulaires inférieurs

De maniére générale, la solution du systeme triangulaire inférieur
Lx=b
est donnée par |'algorithme de substitution directe

b
Lll

i1
1 .
X = r“(bz - E 1Lijxj)7 i=2,...,p
o

X1 =

dont la complexité algorithmique est o< p? a cause de la somme allant de
1 jusqu’a j — 1.
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Méthodes directes

Systémes triangulaires supérieurs
De maniere analogue, la solution du systeme triangulaire supérieur
Ux=b

est donnée par I'algorithme de substitution inverse

bp
XpiUPP
1 p
Xi:U—ii(bi— ZUinj), i:p—ly...,l

j=it1

dont la complexité algorithmique est o< p? 3 cause de la somme allant de
i+ 1 jusqu'a p.
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Méthodes directes
Ax=Db

Méthode d'élimination de Gauss

Pour une matrice A non-triangulaire, on construit les suites de matrices

et de seconds membres

=U

~ =~ ~ =

A={AW A® AW AP
. ,b® Py

b b b b
=b
telles que le systéme devienne triangulaire supérieur a I'étape p
Ux=b

et puisse étre résolu par substitution inverse. La complexité totale est

x p>.
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Méthodes directes

Méthode d'élimination de Gauss

On a donc par définition
AV =A b =b
Les seconds termes de la suite sont définis par

A=A —mPAT) =2
b = b —m{"b{Y, i=2,...p

ol le multiplicateur

1
1 _ Az(‘l)

m; 5 {=2,...,p
Ay

Références
o]



Introduction Systemes linéaires

(e} (e} 000
(e]e} [e] [e]e] le]elele)
(e} (e} (e]e}

[e]e]e}

Méthodes directes

Méthodes directes

Méthodes itératives
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Méthode d'élimination de Gauss

Sous forme matricielle, les seconds termes s'écrivent

ALY AEI; A%

2 2

Ao | 0 AR Al
. .2 I2

0 Al ... Af

On a donc éliminé la partie inférieure de la premiere colonne de A.

1
gk
b2 — bz

by
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Méthodes directes

Méthode d’élimination de Gauss
On définit ainsi la suite de systemes
APx =p*  1<k< p
qui s'obtient par récurrence avec
AETY = AL —m™AM =k, p
pFHD — p® BB k1

ou le multiplicateur

(k) (Z)
m;" = 45, i=k+1,...,p
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Méthodes directes

Méthode d'élimination de Gauss

Sous forme matricielle, les k-iemes termes s'écrivent

1 1

MY

A22

A _

(k)
0 0 Akk

; ; (k)
0 0 Apk

Al e
AL b
. b — :
(k) k
Akp 1(< )
AR b{¥
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On a donc éliminé la partie inférieure des k — 1 premiéres colonne de A.
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Méthodes di
ethodes directes Ax=b
Ux=b

Méthode d'élimination de Gauss

A I'étape p, on obtient donc le systéme triangulaire supérieur recherché
AP = U, b® — b

qui s'écrit explicitement sous la forme

1 1 1
Ay Ag o Aég; b(};;
Ay Asp by
U= R b=
0 ... 0 Al b

et qui peut étre résolu par substitution inverse.
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Méthodes directes

Méthode d'élimination de Gauss

La méthode de Gauss est applicable ssi les pivots

AR £ 0

Cette condition est satisfaite si
® A est diagonale dominante par ligne
® A est diagonale dominante par colonne
® A est symmétrique et définie positive

Dans les autres cas, on peut utiliser la méthode de Gauss avec
changement de pivot.
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Méthodes directes

Factorisation LU

En factorisant la matrice A en partie triangulaire inférieure L et
supérieure U
Ax=LUx=b
~~
=y
la résolution du systeme d'équations se ramene a la résolution successive
des deux systemes triangulaires

Ly=D
Ux=y

par substitution directe et inverse.
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Méthodes directes

Factorisation LU

Les matrices triangulaires sont composées des multiplicateurs, par
exemple

1 O
m{Y 1
L= mgf)
; ; .0
o |

Cette méthode est ainsi équivalente a celle de Gauss en termes de
complexité algorithmique.
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Méthodes directes
Méthode de Thomas
Dans le cas ou la matrice A est tridiagonale, i.e.
a1 Y1
A= | P2
o Yp—1
Bp “p
la factorisation LU prend la forme
1 Ui m
L = L2 , U =
.  Yp-1
Lp 1

Up
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Méthodes directes
Méthode de Thomas

Pour la matrice triangulaire supérieure, on a

U1:Oé1
U’i:ai_Li’yifla Z:277p

et pour la matrice triangulaire inférieure

Bi
Li = )
U;—1

t=2,...,p
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Pour la résolution des systemes triangulaires, on applique les relations de

substitution directe simplifiées
yi1 =b1, yi=b; —Liyi-1,
puis inverse

_ w1

Xp U X = U.(yi — YiXi+1)s
P 1

dont la complexité algorithmique est o p

t=2,...,p

1=p—1,...
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Méthodes itératives

Historique

Pour résoudre I'équation de diffusion

Viu=f, z€QcCR?
u=20 sur 0f)

avec des différences finies centrées du second ordre et p = p? points de
colocation, voici quelques algorithmes ainsi que leur complexité

Elimination de Gauss (1947) o pr
Gauss-Seidel sous-optimal (1954) o< 8p?
Gauss-Seidel optimal (1960) o 8p? log(pi)

Multigrille (1981) o 30p3 log(p;)
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Méthodes itératives
Ax =b

Définition

A la place de construire une suite de systemes équivalents (méthode
directe), pour une méthode itérative, on construit la suite de vecteurs

X = {X(O),x(l)7 coox® 3
Cette suite est dite convergente si

lim x*) = X, vx(©)
k—o0
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Méthodes itératives
Ax =b

Définition

On définit 'erreur a l'itération k

o) — x(b) _

® |'erreur ne peut pas étre calculée dans la pratique puisqu’on ne
connait pas a priori la solution du systéme.

® ['erreur ne doit pas étre cofondue avec le résidu
r%) = b — Ax*

qui peut étre calculé a chaque itération.
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7/ - 7/ -
Méthodes itératives
Ax =b

Définition
On considere la méthode itérative suivante

x( donné

xFH) = Bx®) 4 £ k>0
avec B la matrice d'itération. La méthode est consistante si
x=Bx+f

ce qui peut s'écrire sous la forme




Introduction Systemes linéaires Méthodes directes Méthodes itératives Références

00 00 000 (e} (e}
[e]e) (e} 0000000 0O00e000
00 00 [e]e) 00000000
000 (e}
000000
4 + A H (k) — (k) _
Méthodes itératives o) = x®) —x
1) — By(F) 4 g
Définition f=(I-B)x

En considérant une méthode consistante, I'erreur a l'itération k + 1 s’écrit

eh+1) —  (h41) _ o

=Bx® +f—x
=Bx®) + (I-B)x —x
= Be®

En procédant par récurrence, on obtient facilement

ok+1) — Ble©)
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Méthodes itératives

Définition

Effectuons le changement de variable suivant
_ gkt

—— —~
Vel = Bvel®

Méthodes directes
000

0000000

[e]e]

000

= ek

Méthodes itératives Références
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0O000e00
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x(F+1) — gx(k) +f
(k1) _ Bk g(0)

Si on choisit V telle qu’elle diagonalise B, on a le systeme découplé

eF D) — VIBVe® = Al

ol A est la matrice des valeurs propres de B. On a donc par récurrence

et sous forme indicielle

€

i

(k+1) _ \k(0)
(22
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Méthodes itératives

o(k) — (k) _

Définition e(F 1) — Bke(0)

Ainsi, la condition sur le rayon spectral de la matrice d'itération
p(B) <1

implique la convergence

lim e*t) = lim Bfe® =0, vx©
k—o0 k—oo ’

le taux de convergence asymptotique étant donné par

<= oz 4(B)]
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Méthodes itératives

Définition

De maniere générale, les méthodes itératives peuvent s'écrire sous la
forme

x(© =g (A,b)
x(F+1) — g(k)(A,b,x(k),x(k*U, . ,x(kfs)), k>s
On définit les propriétés suivantes
® s est I'ordre de la méthode

e Si g(k) est indépendant de k, la méthode est dite stationnaire

® Sj g(k) dépend linéairement des x(  la méthode est linéaire
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Méthodes itératives

o) — x(B) _ 4

(k+1) — gx(k) | ¢
7 . o] xX X
Méthodes linéaires

En décomposant la matrice du systéme sous la forme
A=P-N
et en définissant la méthode itérative linéaire comme

x(9 donné

PxFD) = Nx® +b, k>0
la consistance est garantie et on a

B=P !N= P 'A
f=P'b

Références
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Méthodes linéaires

Ainsi, la relation de consistance devient

. -1 _p-1
(+I-1+P'A)x=P"'b

=-B

Méthodes itératives

[e]
0000000
O®@000000

o]
000000
Ax =b
(I-B)x=f
B=1-P 'A
f=P 'b

et se réduit sous la forme du systéme préconditionné

P 'Ax=P b

Références
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On résoud donc le systéme préconditionné dont la solution est identique
a celle du systéeme original pourvu que le préconditioneur a gauche P soit

inversible.
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A +A H (k+1) _ (k)
Méthodes itératives Px(E D = Nx(®) 4
x(k+1) — gx(k) +f
Méthodes linéaires A=P-N

En utilisant le résidu r*) = b — Ax(*®), on peut aussi écrire la méthode
sous la forme
Pxk+l) — (A + N)x(k) )
——
—-P
Puis, en divisant par P, on obtient

\x<k+1> — x(&) 4 pLp(k) \

On définit en outre la direction de descente

2F) — p1p(k)
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Ax =b
s - s .
Méthodes itératives X1 Z () L p1 )

r(F) —p — Ax(®)
Pk — p(B)

Méthodes linéaires
Par exemple, on peut choisir naivement
P=A
Dans ce cas, l'itération s'écrit
x(FHD) — (k) 4 A —14.(F)
=x® L A7 —x®) =x,  yx®

® On a convergence en une seule itération mais le coiit est celui du
probleéme initial puisqu’on doit résoudre Az*) = r(¥),

® || faut choisir un préconditionneur plus facile a inverser et qui
permette quand méme de converger en peu d'itérations.
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Méthodes linéaire de Jacobi

Pour la méthode de Jacobi, le préconditioneur est choisi comme la
diagonale de A
P= w_lD, Dij = Aijéij

ol w est un paramétre de sous- ou sur-relaxation qui permet de modifier
les propriétés de convergence. La méthode de Jacobi est donc définie par
I'itération
x(k+D) — (k) 4 (w—lD)—lr(k)
=P

Le coiit de I'itération de Jacobi est donc o p'.
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Méthodes linéaire de Gauss-Seidel

Pour la méthode de Gauss-Seidel, le préconditioneur est choisi comme la
partie triangulaire inférieure de A

_ —A;; i>7
= ) e ij
P=w "D-E, Ei; { 0 i<

La méthode de Gauss-Seidel est donc définie par I'itération

X+ = x®) 4 (u~1D — E)~Lr®
———
P

Le coiit de I'itération de Gauss-Seidel est donc o< p2. On espere donc
faire moins d'itérations qu'avec la méthode de Jacobi.
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Méthodes itératives

Méthodes linéaires - Résultats de convergence

® Pour A diagonale dominante stricte et w = 1, les méthodes de
Jacobi et de Gauss-Seidel sont convergentes

® Pour A symétrique et définie positive, la méthode de Jacobi
converge si

2
0 -
<w< SD1A)

® Pour A tridiagonale, symétrique et définie positive, on a
p(Bas) = p*(Bj)

c'est-a-dire que la méthode de Gauss-Seidel converge plus
rapidement que la méthode de Jacobi

Références
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Méthodes itératives

Méthodes linéaires - Résultats de convergence

® Sans hypotheses sur A, les méthodes de Jacobi et de Gauss-Seidel
ne peuvent &tre convergentes que pour

I<w<?2

® Pour A diagonale dominante stricte, la convergence de la méthode
de Gauss-Seidel est assurée si

I<w<l1
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Méthodes itératives

Critéres d'arrrét

® Nombre d'itérations

ou M est un nombre d'itérations maximal fixé

e Convergence

Méthodes directes
000

0000000

[e]e]

000

[P~ x|
[[P~'b]|

ou 7 est une tolérance fixée

Méthodes itératives

[e]
0000000
00000000

[
000000

r(F) = b — Ax(%)
2(5) — p—1,(k)
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Méthodes itératives B-1_pP-la

] ] KD — () 4 p=1,(R)
Méthodes de Richardson

® Méthode de Richardson stationnaire
x(bHD) — (k) 4 04P_1r(k)7 k>0
® M¢éthode de Richardson instationnaire
xFH) = x(B) 4 (Mp-1p() >
® Matrice d'itération de Richardson

R=1I-a®pP-1A
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o 0000000 0000000
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Méthodes itératives
Méthodes de Richardson

Résoudre le systeme linéaire

Pz® — ()
Calculer le parametre d'accélération

o) — f(z(k))
Mettre a jour la solution

XU+ (k) (k) (k)

Mettre a jour le résidu

PEHD 2 (B) _ (k) A 5 (B)
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Méthodes itératives
Ax =b
Méthodes de Richardson - Méthode du gradient

On consideére la forme quadratique

1
P(y) = §yTAy -y'b

Pour des matrices symétriques, le gradient est donné par
1
Ve(y) = 5(AT +A)y-b=Ay-b

Ainsi
Veé(y)=0 — y=x

On doit donc résoudre un probléeme de minimisation.
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Méthodes itératives T

<) J o) p15(k)

Méthodes de Richardson - Méthode du gradient () — p—1,(k)

® Direction de descente

Méthode de la plus forte pente (gradient)

2P = _vex*P)=b - Ax®) = *)

® Parametre d'accélération

0 r®O T (k)
(k+1)y _ (k) _
Gam BT =0 = o =
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1. Résoudre le systéme linéaire Pz(k) = p(k)
, ., . 2. Calculer le parameétre d'accélération
Méthodes itératives ) = 1z
, . 3 3. Mettre a jour la solution
Méthode Richardson (gradient) (B D) — 5 (B) 4 (k) 5 (k)

4. Mettre a jour le résidu
PO 2 p(B) (k) g ()
La méthode du gradient est ainsi donnée par |'algorithme
1. P=1 — z® =r®
r®T (k)
r&)T Ap(k)
3. x(k+D) — x(k) 4 (k) 5z(K)

4. r(k""l) - r(k) — a(k)Az(k)

2 ak) —

qui est un cas particulier des méthodes de Richardson.
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Méthodes itératives
Méthodes de Richardson

® Méthode du gradient

(k)" (k)
a(k) o r r

T T APR) P=1

® Méthode linéaire de Jacobi
a® =1, P=w'D
® Méthode lindaire de Gauss-Seidel

a® =1, P=w 'D-E
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