
Advection-diffusion Equation modifiée Solution discrète Régularisation Références
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Méthode Upwind du premier ordre
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Equations de Navier–Stokes
Fluides visqueux Newtoniens, écoulements incompressibles

contrainte︷ ︸︸ ︷
∇ · v = 0

ρ( ∂tv︸︷︷︸
variation

+

advection︷ ︸︸ ︷
v ·∇v ) = −∇p︸ ︷︷ ︸

source

+

diffusion︷ ︸︸ ︷
µ∇2v + ρg︸︷︷︸

source

ρcv( ∂tT︸︷︷︸
variation

+

advection︷ ︸︸ ︷
v ·∇T ) = 2µD : D︸ ︷︷ ︸

source

+

diffusion︷ ︸︸ ︷
λ∇2T
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Equation de conservation de l’énergie
Advection-diffusion d’une grandeur scalaire

• Forme dimensionnelle

[ Θ
T ]︷︸︸︷
∂tT +v ·∇T︸ ︷︷ ︸

[ VΘ
L ]

=

[ νΘ
L2 ]︷ ︸︸ ︷

ν∇2T , ν =
λ

ρcv

• Forme adimensionnelle
Haut nombre de Péclet (temps d’advection)(

Θ

T

)
∂t̂T̂ +

(
VΘ

L

)
v̂ · ∇̂T̂ =

(
νΘ

L2

)
∇̂2T̂

∂t̂T̂ + v̂ · ∇̂T̂ =

= ν
VL︷ ︸︸ ︷

Pe−1 ∇̂2T̂

x = L x̂

t = T t̂

v = V v̂

T = Θ T̂

T =
L

V

Pe =
VL

ν
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Equation d’advection-diffusion
Formulation forte

∂tT − ν∇2T + v ·∇T = 0

On considère l’équation d’advection-diffusion stationnaire, en une
dimension spatiale, dont la formulation forte est donnée par A(u) = −ν ∂

2u

∂x2
+ c

∂u

∂x
= 0, Ω = [0, 1]

u(0) = 0, u(1) = 1

avec la solution

u(x) ∈ C2(Ω)
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Equation d’advection-diffusion
Solution analytique

La solution analytique est donnée par

u(x) =
exp

(
c
νx
)
− 1

exp
(

c
ν

)
− 1

• Diffusion dominante : c/ν � 1

u(x) ' x

• Advection dominante : c/ν � 1

u(x) '
exp

(
c
νx
)

exp
(

c
ν

) = exp
(
− c

ν
(1− x)

)
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Equation d’advection-diffusion
Solution analytique
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Equation d’advection-diffusion
Solution analytique

u(x) ' exp
(
− c
ν

(1− x)
)

Lorsque l’advection est dominante, on a un problème de couche limite.
En écrivant le rapport

r =
u(1− δ)
u(1)

' exp

(
−cδ

ν

)
puis en isolant δ, on trouve

δ(r) = ln(1/r)
ν

c
≈ ν

c

L’épaisseur caractéristique de la couche est donc ν/c� 1.
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Equation d’advection-diffusion
Formulation intégrale


A(u) = −ν

∂2u

∂x2
+ c

∂u

∂x
= 0

u(0) = 0, u(1) = 1

La formulation intégrale est obtenue par produit scalaire par une fonction
test (pondération). On obtient ainsi

(A(u), v) =

∫
Ω

(
−ν ∂

2u

∂x2
+ c

∂u

∂x

)
· v dV =

∫
Ω

f · v dx, ∀v ∈ L2(Ω)
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Equation d’advection-diffusion
Formulation intégrale


A(u) = −ν

∂2u

∂x2
+ c

∂u

∂x
= 0

u(0) = 0, u(1) = 1

La formulation intégrale s’écrit donc sous la forme{
(A(u), v) = (f, v), ∀v ∈ L2(Ω)

u(0) = 0, u(1) = 1

avec la solution

u(x) ∈ H2(Ω)
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Equation d’advection-dif.
Discrétisation spatiale

∫
Ω(−ν ∂

2u
∂x2 + c ∂u

∂x
) · v dV =

∫
Ω f · v dx

En utilisant les fonctions test des méthodes de colocation, il vient∫
Ω

(
−ν ∂

2u

∂x2
+ c

∂u

∂x

)
· δ(xi) dx =

∫
Ω

f · δ(xi) dx, i = 2, . . . ,p− 1

Avec les conditions aux limites, on a donc les p équations
A(u)|xi = −ν ∂

2u

∂x2

∣∣∣∣
xi

+ c
∂u

∂x

∣∣∣∣
xi

= fi, i = 2, . . . ,p− 1

u1 = 0, up = 1
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Equation d’advection-diffusion
Discrétisation spatiale

Pour approcher la dérivée première, on écrit les séries de Taylor

ui+1 = ui +
h

1!

∂u

∂x

∣∣∣∣
xi

+
h2

2!

∂2u

∂x2

∣∣∣∣
xi

+
h3

3!

∂3u

∂x3

∣∣∣∣
xi

±O(h4)

ui−1 = ui −
h

1!

∂u

∂x

∣∣∣∣
xi

+
h2

2!

∂2u

∂x2

∣∣∣∣
xi

− h3

3!

∂3u

∂x3

∣∣∣∣
xi

±O(h4)

dont la différence permet d’obtenir

∂u

∂x

∣∣∣∣
xi

=
ui+1 − ui−1

2h
−h

2

3!

∂3u

∂x3

∣∣∣∣
xi

±O(h4)︸ ︷︷ ︸
ε=O(h2)
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Equation d’advection-diffusion
Discrétisation spatiale

Pour approcher la dérivée seconde, on se sert des mêmes séries

ui+1 = ui +
h

1!

∂u

∂x

∣∣∣∣
xi

+
h2

2!

∂2u

∂x2

∣∣∣∣
xi

+
h3

3!

∂3u

∂x3

∣∣∣∣
xi

±O(h4)

ui−1 = ui −
h

1!

∂u

∂x

∣∣∣∣
xi

+
h2

2!

∂2u

∂x2

∣∣∣∣
xi

− h3

3!

∂3u

∂x3

∣∣∣∣
xi

±O(h4)

dont la somme permet d’obtenir

∂2u

∂x2

∣∣∣∣
xi

=
ui+1 − 2ui + ui−1

h2
−2h2

4!

∂4u

∂x4

∣∣∣∣
xi

±O(h4)︸ ︷︷ ︸
ε=O(h2)
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Equation d’advection-diffusion
Discrétisation spatiale

∂u
∂x

∣∣∣
xi

=
ui+1−ui−1

2h
+O(h2)

∂2u
∂x2

∣∣∣∣
xi

=
ui−1−2ui+ui+1

h2 +O(h2)

On obtient ainsi le système d’équations algébriques

• sous forme indicielle
−ν

ui+1 − 2ui + ui−1

h2
+ c

ui+1 − ui−1

2h
= fi, i = 2, . . . , p− 1

u1 = 0, up = 1

• sous forme matricielle : Au = Mf , avec M = I et

A = −
ν

h2


1
. . .

+1 −2 +1
. . .

1

 +
c

2h


0
. . .
−1 0 +1

. . .
0


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Equation d’advection-diffusion
Comparaison éléments/différences finis

• Différences finies du second ordre

−ν

ui+1 − 2ui + ui−1

h2
+ c

ui+1 − ui−1

2h
= fi, i = 2, . . . , p− 1

u1 = 0, up = 1

• Eléments finis linéaires

−ν

ui+1 − 2ui + ui−1

h
+

c

2
(ui+1 − ui−1) =

h

6
(fi−1 + 4fi−1 + fi+1), i = 2, . . . , p− 1

u1 = 0, up = 1
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Equation modifiée
Définition

L’équation modifiée est l’équation réellement résolue après discrétisation

• Discrétisation spatiale

A(u) = f → A(uh) = f

• Equation modifiée

A(uh) = A(u) + Eh(u) = f

• Convergence
lim
h→0

Eh(u) = 0
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Equation modifiée
Dérivation

−ν
ui+1−2ui+ui−1

h2 + c
ui+1−ui−1

2h
= 0

∂u
∂x

∣∣∣
xi

=
ui+1−ui−1

2h
− h2

3!
∂3u
∂x3

∣∣∣∣
xi

±O(h4)

∂2u
∂x2

∣∣∣∣
xi

=
ui+1−2ui+ui−1

h2 − 2h2

4!
∂4u
∂x4

∣∣∣∣
xi

±O(h4)

En utilisant les développements de Taylor, il vient(
−ν ∂

2u

∂x2
+ c

∂u

∂x

)
xi

+

(
−ν 2h2

4!

∂4u

∂x4
+ c

h2

3!

∂3u

∂x3

)
xi

±O(h4) = 0

A l’ordre dominant, on a

A(uh) = A(u) + Eh(u) = −ν ∂
2u

∂x2
+ c

∂u

∂x︸ ︷︷ ︸
physique

−

= α4︷ ︸︸ ︷
ν

2h2

4!

∂4u

∂x4
+

= α3︷︸︸︷
c
h2

3!

∂3u

∂x3︸ ︷︷ ︸
numérique

= 0
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Equation modifiée
Interprétation

α3 = ch
2

3!
, α4 = ν 2h2

4!

Avec cette discrétisation, l’équation réellement résolue s’écrit

∂u

∂t
− ν ∂

2u

∂x2
+ c

∂u

∂x
− α4

∂4u

∂x4
+ α3

∂3u

∂x3
= 0

En considérant une solution de la forme u = û ei(kx−ωt), on obtient

(−iω + νk2 + ick− α4k4 − iα3k3)û = 0

dont on déduit la relation de dispersion

ω = ck− α3k3︸ ︷︷ ︸
advection

+

diff./ampl.︷ ︸︸ ︷
i(−νk2 + α4k4)
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Equation modifiée
Interprétation

ω = ck− α3k3 + i(−νk2 + α4k4)

On déduit la vitesse de phase à partir de la relation de dispersion

vφ =
ω

k
= c−

disp.︷︸︸︷
α3k2 +i(−νk +

anti−dif.︷︸︸︷
α4k3 )

• Dispersion numérique proportionnelle à α3

• Anti-diffusion numérique proportionnelle à α4
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Solution équations discrètes
Dérivation

Pe = VL
ν

−ν
ui+1−2ui+ui−1

h2 + c
ui+1−ui−1

2h
= 0

On reformule les équations discrètes pour faire apparâıtre le nombre de
Péclet local

(P̂e− 1)ui+1 + 2ui − (P̂e + 1)ui−1 = 0, P̂e =
ch

2ν

Avec une solution de la forme

ui = si

on obtient la relation

(P̂e− 1)s2 + 2s− (P̂e + 1) = 0
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Solution équations discrètes
Dérivation

(P̂e− 1)s2 + 2s− (P̂e + 1) = 0

dont les racines sont données par

s1 = 1, s2 =
1 + P̂e

1− P̂e

Par linéarité, la solution des équations discrètes s’écrit comme une
combinaison linéaire des racines

ui = C1s
i
1 + C2s

i
2

En utilisant les conditions aux limites, on obtient

C1 = −C2, C2 =
1

sp−1
2 − 1
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Solution équations discrètes
Monotonicité

P̂e = ch
2ν

La solution des équations discrètes devient donc

ui =
1−

(
1+P̂e

1−P̂e

)i−1

1−
(

1+P̂e

1−P̂e

)p−1
P̂e < 1 → solution monotone

P̂e > 1 → solution oscillante

Pour avoir une solution monotone, on a donc la restriction

h <
2ν

c
� 1

pouvant devenir prohibitive lorsque l’advection est dominante.
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Solution équations discrètes
Monotonicité
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Le comportement oscillatoire est lié à

• l’épaisseur de la couche limite (gradient élevé)

• la direction de propagation privilégiée donnée par le signe de c
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Méthodes de régularisation
Principe général

A la limite c/ν →∞, dans le cas instationnaire, on a l’équation
∂u

∂t
+ c

∂u

∂x
= 0

u(x, t0) = u0(x)

dont la solution générale vaut

u(x, t) = u0(x− ct)

Les conditions initiales sont donc advectées à la vitesse de phase c.
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Méthodes de régularisation
Principe général

∂u
∂t

+ c ∂u
∂x

= 0

u(x, t) = u0(x− ct)

Par comparaison avec les équations de Riemann

∂ri
∂x

+ λi
∂ri
∂y

= 0, λi =
dy

dx

on voit que l’équation d’advection n’admet qu’une famille de courbes
caractéristiques C donnée par

x− ct = const

sur lesquelles l’invariant de Riemann vaut trivialement

r = u
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Méthodes de régularisation
Principe général

∂u
∂t

+ c ∂u
∂x

= 0

u(x, t) = u0(x− ct)
x− ct = const

r = u

S

dom. dépendance

dom. influence

L’idée générale des méthodes de régularisation est de décentrer la
discrétisation vers le domaine de dépendance (à l’amont) en espace et en
temps.
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Méthodes de régularisation
Méthode Upwind du premier ordre

• Schéma centré{
−ν ui−1−2ui+ui+1

h2 + cui+1−ui−1

2h = 0, i = 2, . . . ,p− 1
u1 = 0, up = 1

• Schéma Upwind du premier ordre c > 0{
−ν ui−1−2ui+ui+1

h2 + cui−ui−1

h = 0, i = 2, . . . ,p− 1
u1 = 0, up = 1

• Schéma Upwind du premier ordre c < 0{
−ν ui−1−2ui+ui+1

h2 + cui+1−ui
h = 0, i = 2, . . . ,p− 1

u1 = 0, up = 1
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Méthodes régularisation
Méthode Upwind du premier ordre

−ν
ui−1−2ui+ui+1

h2 + c
ui+1−ui−1

2h
= 0

−ν
ui−1−2ui+ui+1

h2 + c
ui−ui−1

h
= 0

−ν
ui−1−2ui+ui+1

h2 + c
ui+1−ui

h
= 0

Il est possible de reformuler les schémas Upwind du premier ordre comme
un schéma centré dont le coefficient de diffusion est modifié

−ν ui−1 − 2ui + ui+1

h2
+ c

ui+1 − ui−1

2h
− |c|ui−1 − 2ui + ui+1

2h
= 0

qui s’écrit sous la forme

−

= ν+νh︷ ︸︸ ︷(
ν +
|c|h
2

)
ui−1 − 2ui + ui+1

h2
+ c

ui+1 − ui−1

2h
= 0
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Méthodes de régularisation
Méthode Upwind du premier ordre

P̂e = ch
2ν

• Convergence dégradée à l’ordre 1 à cause du coefficient de diffusion
numérique

νh =
|c|h
2

• Monotonicité garantie

P̂eh =
|c|h

2(ν + νh)
=

|c|h
2ν + |c|h

< 1, ∀h > 0

• Problème physique affecté, voire détruit, par la diffusion numérique

ν → ν + νh
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Méthodes de régularisation
Méthode de Sharfeter–Gummel

P̂e = ch
2ν

• Méthode Upwind du premier ordre

νh =
|c|h
2

= νP̂e = νf(P̂e)

avec

f(P̂e) = P̂e

• Méthode de Sharfeter–Gummel

f(P̂e) = P̂e− 1 + b(2P̂e)

avec la fonction de Bernoulli

b(θ) =

{
θ

eθ−1
θ > 0

1 θ = 0
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Méthodes de régularisation
Méthode de Sharfeter–Gummel

0 2 4 6 8 10
0

2

4

6

8

10

 

 
Upwind 1st order
Sharfeter−−Gummel

On voit graphiquement que la méthode de Sharfeter–Gummel permet de
récupérer le second ordre lorsque P̂e→ 0
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Méthodes de régularisation
Méthodes de Sharfeter–Gummel

Les méthodes de diffusion artificielle (Upwind, SG)

• sont faciles à implémenter

• sont efficaces pour obtenir une solution monotone

• mais introduisent souvent trop de diffusion numérique

Comme alternative, on utilise classiquement les méthodes

• Upwind d’ordre élevé
Total Variation Diminishing (TVD), . . .

• Galerkin généralisées
Streamline-Upwind Petrov-Galerkin (SUPG), Galerkin Least-Squares (GLS), . . .



Advection-diffusion Equation modifiée Solution discrète Régularisation Références
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