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Méthodes de discrétisation en fluides

5. Equation d’advection-diffusion stationnaire
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Equations de Navier—Stokes

Fluides visqueux Newtoniens, écoulements incompressibles

contrainte
V-v =0
advection diffusion
2
p( dw +v-Vv)=-Vp+ uV3v + pg
~~ —— N
variation source source

advection diffusion

—— —~N
pey( OT +wv-VT)=2uD:D+ \VT
~—~ ——

variation source
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Equation de conservation de I'énergie

Advection-diffusion d'une grandeur scalaire

® Forme dimensionnelle

2] [i2]
=~ f—’? by
oT +v-VT =vV-T, V= —
~—— PCy
(2]
® Forme adimensionnelle
Haut nombre de Péclet (temps d'advection) T =
t=Tt
(C] ~ VO . =~ vO\ oo v =
(F)od(T)evr=(2)vr 0]
T =
=T
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Equation d’'advection-diffusion

Formulation forte

Régularisation Références
000 o]
000

000

4T — vV2T +v - VT =0

On considere I'équation d’'advection-diffusion stationnaire, en une
dimension spatiale, dont la formulation forte est donnée par

0%u ou
A(U) = —V@ + Cai = O,

u(0) =0, u(l) =1

avec la solution

u(z) € C%(Q)

Q=10, 1]
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Equation d'advection-diffusion

Solution analytique

La solution analytique est donnée par

® Diffusion dominante : ¢/v < 1
u(z) ~x
® Advection dominante : ¢/v > 1

exp (%x)

u(z) ~ po— (5)

= exp (—5(1 — aj))
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Equation d'advection-diffusion

Solution analytique
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Equation d'advection-diffusion = (20 )
u(z) ~exp(—g(1l -2z
Solution analytique

Lorsque I'advection est dominante, on a un probléme de couche limite.
En écrivant le rapport

L'épaisseur caractéristique de la couche est donc v/c < 1.
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Equation d'advection-diffusion Ay = 8 L2 g
ox? ox
Formulation intégrale w(0) =0, u(l) =1

La formulation intégrale est obtenue par produit scalaire par une fonction
test (pondération). On obtient ainsi

(A(u),v)=/< Vg2x2+cgu>-vd‘/=/f-vd3:, Yo € L*(Q)
Q Qo
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Equation d'advection-diffusion Ay = 8 L2 g
dx2 ox

Formulation intégrale w(0) =0, u(l) =1

La formulation intégrale s'écrit donc sous la forme
(A(u),v) = (f,v), Vo e L¥(Q)
u(0) =0, u(l) =1

avec la solution
u(z) € H*(Q)
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Equation d'advection-dif.
Jao (= V7+cd“)~vdV:fo«vdz
Discrétisation spatiale

En utilisant les fonctions test des méthodes de colocation, il vient

2
/( gx2+ gu> (% dx—/f 0(x;)dx, i=2,...,p—1
Q

Avec les conditions aux limites, on a donc les p équations

9%u

A(u) x; — —1/@ )

+c =f;, i=2,...,p—1

oz

X4

u =0, u,=1
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Equation d'advection-diffusion

Discrétisation spatiale

Pour approcher la dérivée premiére, on écrit les séries de Taylor

h Ou h? 9%u h3 93u 4
R T M TR I B
h Ou h? 9%u h3 93u 4
e T M T = M i B
dont la différence permet d’'obtenir
ou Uj41 — Ui—1 h2 83u 4
— =————— —| *O(h
Oz |, 2h 3! Oz “ ()

e=0O(h?)
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Equation d'advection-diffusion

Discrétisation spatiale

Pour approcher la dérivée seconde, on se sert des mémes séries

h Ou h? 9%u h3 93u 4
R T M TR I B
h Ou h? 9%u h3 93u
i-1 =W — 77 5= — | — = == TOh!
e T M T = M i B
dont la somme permet d’obtenir
@ _ Yit1 7 2u; + i1 _% @ + O(hY)
0x? “ h? 4! Ozt “

e=0(h?)
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oMb 2
=~ +O(h%)

Equation d’advection-diffusion &

. .. . ‘ i1 —2uitui4
Discrétisation spatiale 922

= A=l L L oh?)

On obtient ainsi le systeme d’équations algébriques

® sous forme indicielle
_ Wit — 2u; +u;—q " il T Wiz
h2 2h

up =0, up =1

=f, i=2,...,p—1

® sous forme matricielle : Au = Mf, avec M =1 et

R L PN R
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Equation d'advection-diffusion
Comparaison éléments/différences finis
e Différences finies du second ordre
7Vui+1*211i+ui71 +Cui+1*u1‘71 f, i=2....p—1
h2 2h
u;p =0, up =1
® Eléments finis linéaires
u; —2u; +u;_q c h .
—V% + E(Ui+1 —u;—1) = E(fi—l +4fi 1 +fip1), i=2,...,p—1

u;p =0, up =1
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Equation modifiée

Définition
L'équation modifiée est I'équation réellement résolue aprés discrétisation

® Discrétisation spatiale

® Convergence
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i1 —2uitug g Wil —Ui—1 _
—v 2 +c 5 =0
Equation modifiée 2 g9
u Su| _ Wit1-Wio1 _ p2 93y 4
q Oz |, 2h ~ 3T 943 + O(h%)
K X4
Dérivation o2y | o mig1rmituionoan? otu| L )
ox2 w n2 ar gzt .
i i

En utilisant les développements de Taylor, il vient

P, o0y (s
0z? Ox “ 4! ozt

A |'ordre dominant, on a

Alup) = A(u) + En(u) Pu  Ou

Ox? oz

= —Vv— +C— —

h? 93

4y _

EXe = as

~ = =~
T ot 32 o _
4! Ozt 31 93

physique

numérique
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Equation modifiée
Interprétation
Avec cette discrétisation, I'équation réellement résolue s'écrit

@_ @_1_ @_ @—F @_O
ot Vo Cor Mot T Moms T

En considérant une solution de la forme u = 1 €/®*=“*) on obtient
(—iw + vk? +ick — auk? — iazk®)i = 0
dont on déduit la relation de dispersion
diff. /ampl.

—_——~
w = ck — azk® +i(—vk® + ask?)
———

advection
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Equation modifiée

w =ck — 0431(3 + i(fuk2 + 0441(4)
Interprétation

On déduit la vitesse de phase a partir de la relation de dispersion
disp. anti—dif.
w 2 3
Vo= = ask® +i(—vk+ a4k’ )

® Dispersion numérique proportionnelle a a3

e Anti-diffusion numérique proportionnelle a ay
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Solution équations discretes Pe = VL
b4y —2uitug g Wit —Wi—l _
Dérivation v 2 te—"5g

On reformule les équations discrétes pour faire apparaitre le nombre de
Péclet local

_ _ . ¢h
(Pe — Duj41 +2u; — (Pe+ 1)u;—1 =0, Pe= ;—
v

Avec une solution de la forme
u; =S
on obtient la relation

(Pe —1)s®>+2s — (Pe+1) =0
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Solution équations discretes o _
(Pe —1)s? +2s — (Pe4+1) =0
Dérivation

dont les racines sont données par

_1+Pe

s1=1, s3= —
1—Pe

Par linéarité, la solution des équations discretes s'écrit comme une
combinaison linéaire des racines

u; = 0183 + OQS%
En utilisant les conditions aux limites, on obtient

1

Cr=-Cy Co=—7—
1 2 2 55‘1—1
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Solution équations discretes

Fi- 5
Monotonicité
La solution des équations discretes devient donc
—\ i
1- (L) _
.= _ \1-Pe/ Pe <1 — solution monotone
1 14P¢\P 5 : ;
~\1_5 Pe > 1 — solution oscillante

Pour avoir une solution monotone, on a donc la restriction

2
he <1
C

pouvant devenir prohibitive lorsque |'advection est dominante.
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Le comportement oscillatoire est lié a

Equation modifiée
o]

o]

[e]e]

Solution discréte

Régularisation
000
000
000

Solution équations discretes

Monotonicité

1.5 T T T
—o—\hat{Pe}
\hat{Pe}
1k
0.5r
- -
05 i i i i

® |'épaisseur de la couche limite (gradient élevé)

® |a direction de propagation privilégiée donnée par le signe de ¢
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Méthodes de régularisation

Principe général

A la limite ¢/v — oo, dans le cas instationnaire, on a I'équation

dont la solution générale vaut

u(z,t) = ug(x — ct)

Les conditions initiales sont donc advectées a la vitesse de phase c.

Références
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Méthodes de régularisation ou , cou _g
ot T Cox

. . ;. u(x,t) = ug(x — ct
Principe général (1) = ol )

Par comparaison avec les équations de Riemann

or; or; dy
ANi— =0, N\ =->
ox + Jy dx

on voit que I'équation d'advection n'admet qu'une famille de courbes
caractéristiques C donnée par

x — ct = const
sur lesquelles I'invariant de Riemann vaut trivialement

r=u
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Méthodes de régularisation

Principe général

At

Régularisation
ooe
000
000

u du _
t teoz =0
u(z,t) = up(z — ct)

x — ct = const

r=u

T

>

L'idée générale des méthodes de régularisation est de décentrer la
discrétisation vers le domaine de dépendance (a I'amont) en espace et en

temps.
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Méthodes de régularisation
Méthode Upwind du premier ordre

® Schéma centré

. —2us ; ; —u;_ .
{ it h‘~12l+ul+1 +Cul+1 u; 1:0, Z:2,...,p71

2h
u =0, u,=1
® Schéma Upwind du premier ordre ¢ > 0

u; —1—2u;+u; u; —Uu;— .
vy ettt =0, i=2,...,p—1
u =0,u,=1

® Schéma Upwind du premier ordre ¢ < 0

u;_1—2u;+u; Ujt1—U; .
—y=— e — =0, i=2,...,p—1
u =0, u, =1



Advection-diffusion Equation modifiée Solution discrete Régularisation Références
[e] [e] (e]e] 000 [e]

[e]e]e} [e] (e]e] (o] le]

(e]e} (e]e] 000

0000

[e]

ui—1—2uituigg Uitl Wil _
-v w2 R —T7 =0

Méthodes régularisation

w; g —2u4u;4q u;—uy_q

"2 tec 3
_ouig —2u;fu;4q
v 3

=0
Méthode Upwind du premier ordre

+ c“7'+}17ui’ =0

Il est possible de reformuler les schémas Upwind du premier ordre comme
un schéma centré dont le coefficient de diffusion est modifié

Wi—1 — 2U; + U4 W1 — U1 ;1 — 2u; + Ui
_ -0
h2 T g 2h

qui s'écrit sous la forme

= v+vp

||h u; — U; 4 U; 4 u;—

C il_fzuz’“‘ i1 i1 — U1
=0

(V 2) h2 ¢ 2h
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Méthodes de régularisation

o
=

Pe =

[S]ls
AN

Méthode Upwind du premier ordre

® Convergence dégradée a l'ordre 1 a cause du coefficient de diffusion

numérique
lc|h
v, = ——
R
® Monotonicité garantie
lefh—_ lelh

Pe), = - <1, Yh>0
eh 2v+wvn)  2v+]clh

® Probleme physique affecté, voire détruit, par la diffusion numérique
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Méthodes de régularisation

Méthode de Sharfeter—Gummel

Pe =

Nl
N

® Méthode Upwind du premier ordre

Vh:%:ﬂ/);:uf(f%)

avec

f(Pe) = Pe

® Méthode de Sharfeter—Gummel

f(Pe) = Pe — 1+ b(2Pe)

avec la fonction de Bernoulli

£ 0>0
mm:{fele_o
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Méthodes de régularisation
Méthode de Sharfeter—-Gummel

10 ;
—— Upwind 1st order
Y — Sharfeter——Gummel |
= ]
&
= 4t i
2 . 4
o= — I I I I
0 2 4 6 8 10

Pe

On voit graphiquement que la méthode de Sharfeter-Gummel permet de
récupérer le second ordre lorsque Pe — 0
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Méthodes de régularisation
Méthodes de Sharfeter—Gummel

Les méthodes de diffusion artificielle (Upwind, SG)
® sont faciles a implémenter
® sont efficaces pour obtenir une solution monotone

® mais introduisent souvent trop de diffusion numérique

Comme alternative, on utilise classiquement les méthodes

e Upwind d’ordre élevé
Total Variation Diminishing (TVD), ...

® Galerkin généralisées
Streamline-Upwind Petrov-Galerkin (SUPG), Galerkin Least-Squares (GLS), ...
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® Numerical approximation of partial differential equations, A.
Quarteroni and A. Valli, Springer, 1997
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