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Solutions IV

Schémas aux différences finies

. L’ordre de précision d’un schéma non-centré est donné par la relation
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Dans ce cas, étant donné que n = 3 et que l'on cherche un schéma du premier ordre, on a besoin
d’un support de r = 4 points. On écrit donc les r développements de Taylor a r termes suivants
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qui peuvent s’écrire sous la forme matricielle équivalente

u;—3
U;—2
U;—1
u;

ou la matrice des coefficients de Taylor s’écrit
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On en déduit donc le schéma de dérivation recherché
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2. L’ordre de précision d’un schéma non-centré est donné par la relation
e=0OMh™"). (10)

Dans ce cas, étant donné que n = 2 et que l'on cherche un schéma du premier ordre, on a besoin
d’un support de r = 3 points. On écrit donc les r développements de Taylor a r termes suivants
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qui peuvent s’écrire sous la forme matricielle équivalente
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Ensuite, on multiplie & gauche par T~! pour obtenir
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On en déduit donc le schéma de dérivation recherché
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2 Méthode des volumes finis

Avec la méthode des volumes finis, le domaine de calcul Q est subdivisé en sous-domaines €2; appelés
volumes finis.

A chaque volume fini est associé un noeud 4, placé au centre et dont la coordonnée vaut x;. La valeur
de la solution numérique constante sur chaque volume fini est notée u;. A chaque volume fini §2; est
également associée une fonction test v; valant 1 sur le volume fini €2; auquel elle est rattachée et 0 en
dehors.

Figure 1: Méthode des volumes finis, définitions.



Nous admettrons que tous les volumes finis ont une longueur h et une surface latérale S arbitraire
puisque nous considérons un probleme mono-dimensionnel.
La premiere étape de la discrétisation est la dérivation de la formulation faible de 1’équation de
diffusion stationnaire qui s’obtient en premier lieu par le produit scalaire avec les fonctions test
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puis par une intégration par parties du terme qui comporte une dérivée seconde
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faisant ainsi apparaitre un terme de bord. Par additivité de 'intégration, cette formulation est équivalente
a la somme sur les p volumes finis qui subdivisent le domaine 2
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Apres simplification, nous obtenons la relation suivante qui doit étre vérifiée sur chaque volume fini
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ou il est nécessaire d’approximer le terme de flux sur chacun des deux bords du volume fini €2;.

Comme proposé dans la donnée, nous utilisons un schéma aux différences finies centré du second
ordre permettant d’obtenir les dérivées premieres aux bord des volumes finis a partir des valeurs nodales
adjacentes. On obtient ainsi

U; — Ui— Ui+1 — U .
—v (- - L4 “h ) S =f;hS, Vi. (22)

Apres simplification et prise en compte des conditions aux limites, il vient
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ce qui peut s’écrire sous la forme matricielle standard Au = Mf, avec M = hl et
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Il est intéressant de comparer ce résultat a ceux obtenus par les méthodes des différences finies et des
éléments finis.



