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Solutions IV

1 Schémas aux différences finies

1. L’ordre de précision d’un schéma non-centré est donné par la relation

ε = O(hr−n). (1)

Dans ce cas, étant donné que n = 3 et que l’on cherche un schéma du premier ordre, on a besoin
d’un support de r = 4 points. On écrit donc les r développements de Taylor à r termes suivants
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qui peuvent s’écrire sous la forme matricielle équivalente
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où la matrice des coefficients de Taylor s’écrit
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Ensuite, on multiplie à gauche par T−1 pour obtenir
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On en déduit donc le schéma de dérivation recherché
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2. L’ordre de précision d’un schéma non-centré est donné par la relation

ε = O(hr−n). (10)

Dans ce cas, étant donné que n = 2 et que l’on cherche un schéma du premier ordre, on a besoin
d’un support de r = 3 points. On écrit donc les r développements de Taylor à r termes suivants
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qui peuvent s’écrire sous la forme matricielle équivalente ui
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où la matrice des coefficients de Taylor s’écrit
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On en déduit donc le schéma de dérivation recherché
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2 Méthode des volumes finis

Avec la méthode des volumes finis, le domaine de calcul Ω est subdivisé en sous-domaines Ωi appelés
volumes finis.

A chaque volume fini est associé un noeud i, placé au centre et dont la coordonnée vaut xi. La valeur
de la solution numérique constante sur chaque volume fini est notée ui. A chaque volume fini Ωi est
également associée une fonction test vi valant 1 sur le volume fini Ωi auquel elle est rattachée et 0 en
dehors.

Ωi

Figure 1: Méthode des volumes finis, définitions.
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Nous admettrons que tous les volumes finis ont une longueur h et une surface latérale S arbitraire
puisque nous considérons un problème mono-dimensionnel.

La première étape de la discrétisation est la dérivation de la formulation faible de l’équation de
diffusion stationnaire qui s’obtient en premier lieu par le produit scalaire avec les fonctions test
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faisant ainsi apparâıtre un terme de bord. Par additivité de l’intégration, cette formulation est équivalente
à la somme sur les p volumes finis qui subdivisent le domaine Ω
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Après simplification, nous obtenons la relation suivante qui doit être vérifiée sur chaque volume fini
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où il est nécessaire d’approximer le terme de flux sur chacun des deux bords du volume fini Ωi.
Comme proposé dans la donnée, nous utilisons un schéma aux différences finies centré du second

ordre permettant d’obtenir les dérivées premières aux bord des volumes finis à partir des valeurs nodales
adjacentes. On obtient ainsi
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ce qui peut s’écrire sous la forme matricielle standard Au = Mf , avec M = hI et

A = −ν
h


1
. . .

+1 −2 +1
. . .

1

 .

Il est intéressant de comparer ce résultat à ceux obtenus par les méthodes des différences finies et des
éléments finis.
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