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Introduction

Méthode des différences finies

® Formulation intégrale

(Opu,v) + (A(u),v) = F(v), Vve L*(Q)

® [Fonctions test

v; = (5(X1)

® |nterpolation des champs

ui(t) = (u(x, t)a 6(Xi))

Conditions limites
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H i (1) = ), 6(x;
Introduction ult) = (u(@, 1), 86xi))
u(e,t) =320 u;(t)¢;(x)+7(,t,p)
Méthode des différences finies D u=® ,®u

® Champs connus aux points de collocation uniquement

® Base d'interpolation non-définie

e Définition des opérateurs de dérivation discrets avec des séries de
Taylor
—

u(z,t) = Z E=x)" O + 7(x,t, 1)

| n
o n! ox N
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Introduction
Méthode des différences finies
up
X1

® Noeuds de collocation
X:{Xi|1’:X1+(’i—1)h}, Z:L,p

® Valeurs nodales

wi(t) = (u(z,t),0(x;))
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On consideére I'équation de diffusion stationnaire, en une dimension
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Equation de diffusion

Formulation forte

spatiale, dont la formulation forte est donnée par

0%y

Au) = _Vﬁ =f Q=/[ab]
ou

U(a) O, gnb_()

avec la solution

Conditions limites
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Equati iffusi o
quation de diffusion Aw) = —vo— = f
. . s u
Formulation intégrale u(a) = 0, o " =0
z b

La formulation intégrale est obtenue par produit scalaire par une fonction
test (pondération)

(A(u),v):/—Vgigmdm:/f-vdm, Vv € L*(9)
Q Q
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Equation de diffusion

(A(u),v) = [q —1182“’ cvde = [o f-vdz
Formulation intégrale

oz2

La formulation intégrale s'écrit donc sous la forme

(A(u),v) = (f,v), Vo€ L*(Q)

avec la solution
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Equation de diffusion o
"

fn—uamg ~'Udz:fnf<vdm
Discrétisation spatiale

En utilisant les fonctions test, il vient

(A(u),é(xi))z/g—ug;;-d(xi) dx:/ﬂf~6(xi) de, i=2,...,p—1

Avec les conditions aux limites, on a donc les p équations

0%u )
A(U)|x1~:_yﬁ =f, 1=2,....,.p—1
u; =0, @n =0

or |,




Introduction Equation diffusion Equation modifiée Opérateurs dérivation Conditions limites
000 o] [e] 0000 o]

(e]e} o (e]e] [e]
oeo o 00000000 (e]e}
[e] (e}

Equation de diffusion

Discrétisation spatiale

Pour approcher la dérivée seconde, on écrit les séries de Taylor

h Ou h? 9%u h3 93u 4
T M TR I i B
h Ou h? 9%u h3 93u
i—1 = Ui — 77 3 o1 9.2 o7 ooa| O
e T M T =1 N i B
dont la somme permet d'obtenir
@ _ Wit — 205+ iy _% @ + O(h%)
ox?| h? 4! Ozt “

e=0(h?)
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- =f;
Equation de diffusion oct|, =
T . 92y | _ Wi—1—2uituigg 2
Discrétisation spatiale e W2 + O(h%)

On obtient ainsi le systeme d’équations algébriques

® sous forme indicielle

e 2u; + 141

2 =f;, i=2,...,p—1
Up — Up_—1
u; =0, P__P7° _
h
® sous forme matricielle
1 uy 1 0
Y .
-3 +1 -2 +1 w | = 1 £;
—1/h  +1/h up 1 0
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Equation de diffusion

Comparaison éléments/différences finis

e Différences finies du second ordre

e 2u; + 141

s =f, i=2...,p—1

Up — Up—1 o

u1:0, A

® Eléments finis linéaires

u =0, —v

9w, ) h

U;—1 U + Ui = Al ), i=2,.
h 6
Up—1 — Up

=0
h

Conditions limites
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Equation modifiée

Définition
L'équation modifiée est I'équation réellement résolue aprés discrétisation

® Discrétisation spatiale

e Convergence
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Conditions limites
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. et s i —2utug
Equation modifiée B Rl
824 W41 —2uitus_1 2p2 gy 4
Dérivation ot = At ot | FOMD
En utilisant le développement de Taylor,
0%u 2h% 0%y
or “ 4! Ox .
A |'ordre dominant, on a
0%u 242 0*u
A(up) = Alu) + Ep(u) = —v=——s —vV—r — =
(un) = A(u) + En(u) = —v'gy — v =5 = f
—
physique numérique
On a bien convergence puisque
lim Ep(u) =0

h—0
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Equation modifiée
Interprétation physique

Avec cette discrétisation, I'équation réellement résolue s'écrit
ou 0%u 0*u
% Vo Mgp s 0

En considérant une solution de la forme u = 1 e!**=“*) on obtient
(—iw + vk? — agkH i =0

dont on déduit la relation de dispersion

(atténuation)
diffusion
—~N
w= —ivk? +iayk?
~——
amplification

Conditions limites
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Opérateurs de dérivation

Dérivée premiere - schéma progressif

® Série de Taylor

h Ou h? 9%u h3 9%u 4
R T M TR = I i B
® En isolant la dérivée premiere
ou W1 —w h 0%u 9
— === —| +0O(h
Oz |, h 2! 022 ()
e=0O(h)

® Approximation du premier ordre
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Conditions limites

Opérateurs de dérivation
Dérivée premieére - schéma rétrograde
® Série de Taylor
h Ou h? 0%u h3 8%u
i1 = — — — — — — —| +0K
e T M T == M i B
® En isolant la dérivée premiere
ou w—u,_1  h O%u 9
— =——4= —| +0O(h
Oz |, h 2! 022 | (R7)
e=0O(h)

® Approximation du premier ordre
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Opérateurs de dérivation
Dérivée premieére - schéma centré

® Série de Taylor

h Ou h? 0%u

B T N TH ez] N T
h Ou h? 0%u h 93u
Wi—1 =W — —5 — — - — —
1! Oz < 2! Ox2 - 3! Oz

® Différence des deux séries

h 93u

ou Wip1—u_1 h? du 4
Oz |, 2h 3! Ox3 < O(r7)
e=O(h?)

® Approximation du second ordre

Conditions limites
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+ O(h*)

+ O(h*)
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Opérateurs de dérivation

D yu=® ;%u
Dérivée premiere - formulations matricielles
® Schéma progressif

1 41
F) ) —ws 1 -1 +1
au :Mio(h) pt == 1 41
ox x; h ’ h 1 +1
?
® Schéma rétrograde
?
ou u; —ui—1 _ 1 -1 +1
el S MTWl o) D= -1 41
o Ix, h ’ h —1 41
-1 +1
® Schéma centré
? 7
5 e S
gul Wil T Wio1 o(k?) D% =_— ~1 0 41
oz |, 2h T op 10 41
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Opérateurs dérivation

Conditions limites
o]

Opérateurs de dérivation
Dérivée seconde - schéma centré
® Série de Taylor
h Ou h? 0%u h 93u
i1 =W+ — — — — — — +0mn
R I I = B Il B G
h Ou h? 0%u h 93u
1= U — — — — | = =] +0o0h*
R T I = M =l B G
® Somme des deux séries
@ C UWiy1 — 2w U _% @ + O(hh)
0x? - h? 4! Oxt <
e=0(h?)

® Approximation du second ordre
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Opérateurs de dérivation

D zzu=2 5o Pu
Dérivée seconde - schéma centré

® Formulation indicielle

@ o1 — 2wt uig
oz2|. h?

Xi

+ O(h?)

® Formulation matricielle

S h S a
D, = +1 -2 41
’ +1 -2 41
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Méthode générale

Pour approximer une dérivée d'ordre n,
avec un support! de r points,

il faut satisfaire

r>n

et utiliser r développements de Taylor a r termes.

en anglais stencil

u(z, t) ~ Eln_:lo (m=x)™

Conditions limites

o]
o]
[e]e]
[e]e]
"
7
0™ | p—x;
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Opérateurs de dérivation

Méthode générale

Ainsi, pour un

Ui—1

Uit+1 =

schéma

(1h)°
0!

(on)°
0!

(1h)°
0!

Equation modifiée
[e]
[e]
[e]

Opérateurs dérivation

Conditions limites

0000 [e]

(e]e] [e]

O@000000 (e]e}
(e}

ue, t) = YL e=x”

centré et r = 3, on écrit

8%
8x0
x

8%u

920

8%

920 «
i

X

(1!
T

(onr)!
1!

(1h)!
1!

o'y

ozl
x

alu

Ozl
X

alu

ozl
X4

(1h)?
2!

(0h)?
2!

(1h)?
2!

A"y
n=0  nl CE P

Pul om®)
dx2

x4
u + on®
a2 ")

Xq
a2 5
S| o0

.
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Opérateurs de dérivation
Méthode générale

Ces séries de Taylor peuvent s'écrire sous forme matricielle,

0 1 2
AN e O Ve AT
- _ <0h>° 4o <0h>2 g; + | O
Wit (1(;)0 Lan (1h>2 or ) O(h?)
=T

Dans ce cas, la matrice des coefficients de Taylor vaut

h2
2
T = 1 0 O
h2
2
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_ Wil Wi 2
= o1 + O(h?)

Opérateurs de dérivation

2, Cuyg—2u;+u,

Méthode générale 55 o el L on?)
Ensuite, on multiplie 3 gauche par T~! pour obtenir

80

373 0 1 0 U1 0

ot =| 3 Otz w | £ Om?)

o /| e e tw Ui+l O(h'*)

—T-1

On retrouve les résultats précédents pour une approximation des dérivées
premiére et seconde avec un schéma centré de trois points.
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Opérateurs de dérivation

Méthode générale

Si on considére une approximation décentrée avec r = 4, on obtient

(2n)° 8% (2n)! 8'u N (2n)? 8%u (2h)3 83u + od)
Wi = g g e g
iz o 20| 1 oal| 2l 92| 3 93|,
K k2 k2 T
S (1h)° 8% B (1h)! 8lu N (1h)? 8%u B (1h)3 83w + o)
it o 90| T 2 922 3 92|
W (0n)° 8% N (on)t o'u N (0n)2 8%u N (0n)3 83w + oY)
’ 0! 9a0 11 Bzl 21 a2 31 a3
x; x; x; x;
(1h)° 8% (1h)t 8lu (1h)2 82w (1h)3 83w 4
Ujyq = —_— + — + — — + O(h
it o 90| 1 oxl | 2 92| 3 92| ¢
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Opérateurs de dérivation
Méthode générale

Sous forme matricielle, ceci s'écrit

A TR T O 0
U;—2 ) . , B 270 O(h?)
. (Ul) (1h) (1h) _(n) o u O(h4)
it = 0 1 2 3! 3 6%1 + 4
u; (Oh) + (Oh) (Oh) + (O?})L‘) ggg O(h )
. 0 1 2 \3 4
Uit <1éz!> +<11h') <1;> e 9y N O(h?)
=T

Dans ce cas, la matrice des coefficients de Taylor vaut

2 3

oo e
Y S Tl

T = 2 6
1 0 0 0

h? h?

1 +h 5 +5
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Méthode générale

Ensuite, on multiplie 3 gauche par T~! pour obtenir

0
oot o 0 1 0 Wi_s 0
oty 1 6 3 2 3
8531 _ +ﬁ _@ +@ +@ u;—1 + O(h )
0 u 0 += -7z +3= u; O(hQ)
g2 1 y y h 1
2’y —35 T75 —75 tis Wit1 Oo(h')
ox |xi
— T—l
On en déduit donc les schémas de dérivation
@ N 2ui+1 + 3117; — 6112;1 + U;—2
gzt |, 6h Pul i — 20w
Pu Wi —3u; + 301 — U x| h?
ox3 - o h3
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Opérateurs de dérivation

Méthode générale

® Ordre de dérivation maximal calculable
Npax =T — 1

® Ordre de précision pour la dérivée d'ordre n (schéma non-centré)
e=0(h™")

® Ordre de précision pour la dérivée d'ordre n (schéma centré)

e =O(h"™"),  n pair
e=0O(h"™™), nimpair
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Conditions aux limites

Principaux types

A(u) = f
u € CkQ), + C.L.
® Conditions de Dirichlet

u= D(z,t), surdQp

® Conditions de Neumann

Ou
I Vu-n = N(z,t), surdQy

e Conditions périodiques
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Conditions aux limites
Conditions de Dirichlet

ug Iul us U1 Uy Uit Up—1 Uy I Upt1
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Conditions aux limites

Equation diffusion

Equation modifiée Opérateurs dérivation Conditions limites
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5z, =~ xom
Conditions de Neumann (flux) - gu| _mTho1 4o
Schéma décentré d'ordre 1
ug Iul Uy U1 Wy Uit Up-—1 upl Up 41
oner e eeas e Qe seeas S,
X0 |X1 X2 Xi—1 X Xit1 Xp—1 Xpl Xp+1
@ ) N ou Up — Up_1
8 n o~ A —.n — 5 ~ _P p
z X1 82’} h
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Conditions aux limites

w —3u,; +4u; —u,
% . _ i 27,1»1 i4+2 io(h2>
Conditions de Neumann (flux) - Bu| _ HIMTan_ghnig 42
Schéma décentré d'ordre 2
ug Iul ug W;—1 Uy Uiyl Up—1 upl Up 1
oner e s et Qe seeas w0
X0 |X1 X2 Xi—1 Xi  Xit1 Xp—-1 Xpl Xp+1
ou ou
-n = -n =
ox |, or -

+3u; — 4up + u3  H3up —4up +upo
2h o 2h




Introduction

[e]e]e}

Equation diffusion Equation modifiée Opérateurs dérivation
o] [e] 0000

[e]e] [e] [e]e)

000 [e] 00000000

o]

Conditions aux limites

Conditions périodiques

i=i+ kp, kEZ

Conditions limites
o

o

0o

()
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Conditions limites
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o] oe
oul| o Wbl W1
i . . dx . 2h
Conditions aux limites xi
92u| L Wim1—2uituigg
e s . . oz2 - F
Conditions périodiques T '

i

up =up Upy1 =ui

® Dérivée premiere ® Dérivée seconde
Schéma centré Schéma centré
2
@ Uz —up 0%u _Uup — 2w fup
- 2| — 2
ox o 2h oxr o h
Ju|  w—up 0%u up1 =20,y
2 - 2
ox - 2h ox - h
0 +1 -1 -2 41 +1
. 1 -1 0 o+ o4 -2 41
.= — -1 0 +1 D° — +1 -2 41
2 -1 0 41 2 +1 -2 41

+1 -1 0 +1 +1 =2
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