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Discrétisation spatiale
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Introduction
Méthode des différences finies

• Formulation intégrale

(∂tu, v) + (A(u), v) = F(v), ∀v ∈ L2(Ω)

• Fonctions test
vi = δ(xi)

• Interpolation des champs

ui(t) = (u(x, t), δ(xi))
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Introduction
Méthode des différences finies

ui(t) = (u(x, t), δ(xi))

u(x, t) =
∑p

j=1 uj(t)φj(x)+τ(x, t, p)

D,xu = Φ,xΦu

• Champs connus aux points de collocation uniquement

• Base d’interpolation non-définie

• Définition des opérateurs de dérivation discrets avec des séries de
Taylor

u(x, t) =

r−1∑
n=0

(x− xi)
n

n!

∂nu

∂xn

∣∣∣∣
x=xi

+ τ(x, t, r)
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Introduction
Méthode des différences finies

• Noeuds de collocation

X = {xi|x = x1 + (i− 1)h}, i = 1, . . . ,p

• Valeurs nodales
ui(t) = (u(x, t), δ(xi))



Introduction Equation diffusion Equation modifiée Opérateurs dérivation Conditions limites

Equation de diffusion
Formulation forte

On considère l’équation de diffusion stationnaire, en une dimension
spatiale, dont la formulation forte est donnée par

A(u) = −ν ∂
2u

∂x2
= f, Ω = [a,b]

u(a) = 0,
∂u

∂x
· n
∣∣∣∣
b

= 0

avec la solution

u ∈ C2(Ω)
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Equation de diffusion
Formulation intégrale


A(u) = −ν

∂2u

∂x2
= f

u(a) = 0,
∂u

∂x
· n
∣∣∣∣
b

= 0

La formulation intégrale est obtenue par produit scalaire par une fonction
test (pondération)

(A(u), v) =

∫
Ω

−ν ∂
2u

∂x2
· v dx =

∫
Ω

f · v dx, ∀v ∈ L2(Ω)
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Equation de diffusion
Formulation intégrale

(A(u), v) =
∫
Ω −ν

∂2u
∂x2 · v dx =

∫
Ω f · v dx

La formulation intégrale s’écrit donc sous la forme
(A(u), v) = (f, v), ∀v ∈ L2(Ω)

u(a) = 0,
∂u

∂x
· n
∣∣∣∣
b

= 0

avec la solution

u ∈ H2(Ω)



Introduction Equation diffusion Equation modifiée Opérateurs dérivation Conditions limites

Equation de diffusion
Discrétisation spatiale

∫
Ω −ν

∂2u
∂x2 · v dx =

∫
Ω f · v dx

En utilisant les fonctions test, il vient

(A(u), δ(xi)) =

∫
Ω

−ν ∂
2u

∂x2
· δ(xi) dx =

∫
Ω

f · δ(xi) dx, i = 2, . . . ,p− 1

Avec les conditions aux limites, on a donc les p équations
A(u)|xi

= −ν ∂
2u

∂x2

∣∣∣∣
xi

= fi, i = 2, . . . ,p− 1

u1 = 0,
∂u

∂x
· n
∣∣∣∣
b

= 0
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Equation de diffusion
Discrétisation spatiale

Pour approcher la dérivée seconde, on écrit les séries de Taylor

ui+1 = ui +
h

1!

∂u

∂x

∣∣∣∣
xi

+
h2

2!

∂2u

∂x2

∣∣∣∣
xi

+
h3

3!

∂3u

∂x3

∣∣∣∣
xi

±O(h4)

ui−1 = ui −
h

1!

∂u

∂x

∣∣∣∣
xi

+
h2

2!

∂2u

∂x2

∣∣∣∣
xi

− h3

3!

∂3u

∂x3

∣∣∣∣
xi

±O(h4)

dont la somme permet d’obtenir

∂2u

∂x2

∣∣∣∣
xi

=
ui+1 − 2ui + ui−1

h2
−2h2

4!

∂4u

∂x4

∣∣∣∣
xi

±O(h4)︸ ︷︷ ︸
ε=O(h2)
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Equation de diffusion
Discrétisation spatiale

−ν ∂2u
∂x2

∣∣∣∣
xi

= fi

∂2u
∂x2

∣∣∣∣
xi

=
ui−1−2ui+ui+1

h2 +O(h2)

On obtient ainsi le système d’équations algébriques

• sous forme indicielle
−ν ui−1 − 2ui + ui+1

h2
= fi, i = 2, . . . ,p− 1

u1 = 0,
up − up−1

h
= 0

• sous forme matricielle

−
ν

h2


1
. . .

+1 −2 +1
. . .

−1/h +1/h


︸ ︷︷ ︸

A


u1
.
ui
.

up

 =


1

.
1

.
1


︸ ︷︷ ︸

M


0
.
fi
.
0


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Equation de diffusion
Comparaison éléments/différences finis

• Différences finies du second ordre
−ν ui−1 − 2ui + ui+1

h2
= fi, i = 2, . . . ,p− 1

u1 = 0,
up − up−1

h
= 0

• Eléments finis linéaires
−ν ui−1 − 2ui + ui+1

h
=
h

6
(fi−1 + 4fi + fi+1), i = 2, . . . ,p− 1

u1 = 0, −ν up−1 − up

h
= 0
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Equation modifiée
Définition

L’équation modifiée est l’équation réellement résolue après discrétisation

• Discrétisation spatiale

A(u) = f → A(uh) = f

• Equation modifiée

A(uh) = A(u) + Eh(u) = f

• Convergence
lim
h→0

Eh(u) = 0
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Equation modifiée
Dérivation

−ν
ui−1−2ui+ui+1

h2 = fi

∂2u
∂x2

∣∣∣∣
xi

=
ui+1−2ui+ui−1

h2 − 2h2

4!
∂4u
∂x4

∣∣∣∣
xi

±O(h4)

En utilisant le développement de Taylor,

−ν ∂
2u

∂x2

∣∣∣∣
xi

− ν 2h2

4!

∂4u

∂x4

∣∣∣∣
xi

±O(h4) = fi

A l’ordre dominant, on a

A(uh) = A(u) + Eh(u) = −ν ∂
2u

∂x2︸ ︷︷ ︸
physique

− ν 2h2

4!

∂4u

∂x4︸ ︷︷ ︸
numérique

= f

On a bien convergence puisque

lim
h→0

Eh(u) = 0
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Equation modifiée
Interprétation physique

Avec cette discrétisation, l’équation réellement résolue s’écrit

∂u

∂t
− ν ∂

2u

∂x2
− α4

∂4u

∂x4
= 0

En considérant une solution de la forme u = û ei(kx−ωt), on obtient

(−iω + νk2 − α4k4)û = 0

dont on déduit la relation de dispersion

ω =

(atténuation)

diffusion︷ ︸︸ ︷
−iνk2 +iα4k4︸ ︷︷ ︸

amplification
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Opérateurs de dérivation
Dérivée première - schéma progressif

• Série de Taylor

ui+1 = ui +
h

1!

∂u

∂x

∣∣∣∣
xi

+
h2

2!

∂2u

∂x2

∣∣∣∣
xi

+
h3

3!

∂3u

∂x3

∣∣∣∣
xi

±O(h4)

• En isolant la dérivée première

∂u

∂x

∣∣∣∣
xi

=
ui+1 − ui

h
− h

2!

∂2u

∂x2

∣∣∣∣
xi

±O(h2)︸ ︷︷ ︸
ε=O(h)

• Approximation du premier ordre
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Opérateurs de dérivation
Dérivée première - schéma rétrograde

• Série de Taylor

ui−1 = ui −
h

1!

∂u

∂x

∣∣∣∣
xi

+
h2

2!

∂2u

∂x2

∣∣∣∣
xi

− h3

3!

∂3u

∂x3

∣∣∣∣
xi

±O(h4)

• En isolant la dérivée première

∂u

∂x

∣∣∣∣
xi

=
ui − ui−1

h
+
h

2!

∂2u

∂x2

∣∣∣∣
xi

±O(h2)︸ ︷︷ ︸
ε=O(h)

• Approximation du premier ordre
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Opérateurs de dérivation
Dérivée première - schéma centré

• Série de Taylor

ui+1 = ui +
h

1!

∂u

∂x

∣∣∣∣
xi

+
h2

2!

∂2u

∂x2

∣∣∣∣
xi

+
h3

3!

∂3u

∂x3

∣∣∣∣
xi

±O(h4)

ui−1 = ui −
h

1!

∂u

∂x

∣∣∣∣
xi

+
h2

2!

∂2u

∂x2

∣∣∣∣
xi

− h3

3!

∂3u

∂x3

∣∣∣∣
xi

±O(h4)

• Différence des deux séries

∂u

∂x

∣∣∣∣
xi

=
ui+1 − ui−1

2h
−h

2

3!

∂3u

∂x3

∣∣∣∣
xi

±O(h4)︸ ︷︷ ︸
ε=O(h2)

• Approximation du second ordre
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Opérateurs de dérivation
Dérivée première - formulations matricielles

D,xu = Φ,xΦu

• Schéma progressif

∂u

∂x

∣∣∣∣
xi

=
ui+1 − ui

h
±O(h) D

+
,x =

1

h


−1 +1

−1 +1
−1 +1

−1 +1
?



• Schéma rétrograde

∂u

∂x

∣∣∣∣
xi

=
ui − ui−1

h
±O(h) D

−
,x =

1

h


?
−1 +1

−1 +1
−1 +1

−1 +1



• Schéma centré

∂u

∂x

∣∣∣∣
xi

=
ui+1 − ui−1

2h
±O(h

2
) D

◦
,x =

1

2h


? ?
−1 0 +1

−1 0 +1
−1 0 +1

? ?


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Opérateurs de dérivation
Dérivée seconde - schéma centré

• Série de Taylor

ui+1 = ui +
h

1!

∂u

∂x

∣∣∣∣
xi

+
h2

2!

∂2u

∂x2

∣∣∣∣
xi

+
h3

3!

∂3u

∂x3

∣∣∣∣
xi

±O(h4)

ui−1 = ui −
h

1!

∂u

∂x

∣∣∣∣
xi

+
h2

2!

∂2u

∂x2

∣∣∣∣
xi

− h3

3!

∂3u

∂x3

∣∣∣∣
xi

±O(h4)

• Somme des deux séries

∂2u

∂x2

∣∣∣∣
xi

=
ui+1 − 2ui + ui−1

h2
−2h2

4!

∂4u

∂x4

∣∣∣∣
xi

±O(h4)︸ ︷︷ ︸
ε=O(h2)

• Approximation du second ordre
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Opérateurs de dérivation
Dérivée seconde - schéma centré

D,xxu = Φ,xxΦu

• Formulation indicielle

∂2u

∂x2

∣∣∣∣
xi

=
ui−1 − 2ui + ui+1

h2
±O(h2)

• Formulation matricielle

D
◦
,xx =

1

h2


? ?
+1 −2 +1

+1 −2 +1
+1 −2 +1

? ?


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Opérateurs de dérivation
Méthode générale

u(x, t) '
∑r−1

n=0
(x−xi)n

n!
∂nu
∂xn

∣∣∣
x=xi

• Pour approximer une dérivée d’ordre n,

• avec un support1 de r points,

• il faut satisfaire
r > n

• et utiliser r développements de Taylor à r termes.

1en anglais stencil
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Opérateurs de dérivation
Méthode générale

u(x, t) '
∑r−1

n=0
(x−xi)n

n!
∂nu
∂xn

∣∣∣
x=xi

Ainsi, pour un schéma centré et r = 3, on écrit

ui−1 =
(1h)0

0!

∂0u

∂x0

∣∣∣∣∣
xi

−
(1h)1

1!

∂1u

∂x1

∣∣∣∣∣
xi

+
(1h)2

2!

∂2u

∂x2

∣∣∣∣∣
xi

±O(h
3
)

ui =
(0h)0

0!

∂0u

∂x0

∣∣∣∣∣
xi

+
(0h)1

1!

∂1u

∂x1

∣∣∣∣∣
xi

+
(0h)2

2!

∂2u

∂x2

∣∣∣∣∣
xi

±O(h
3
)

ui+1 =
(1h)0

0!

∂0u

∂x0

∣∣∣∣∣
xi

+
(1h)1

1!

∂1u

∂x1

∣∣∣∣∣
xi

+
(1h)2

2!

∂2u

∂x2

∣∣∣∣∣
xi

±O(h
3
)
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Opérateurs de dérivation
Méthode générale

Ces séries de Taylor peuvent s’écrire sous forme matricielle, ui−1

ui
ui+1

 =


(1h)0

0! − (1h)1

1!
(1h)2

2!
(0h)0

0! + (0h)1

1!
(0h)2

2!
(1h)0

0! + (1h)1

1!
(1h)2

2!


︸ ︷︷ ︸

≡ T

 ∂0u
∂x0

∂1u
∂x1

∂2u
∂x2


|xi

±

 O(h3)
O(h3)
O(h3)



Dans ce cas, la matrice des coefficients de Taylor vaut

T =

 1 −h h2

2
1 0 0

1 +h h2

2


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Opérateurs de dérivation
Méthode générale

∂u
∂x

∣∣∣
xi

=
ui+1−ui−1

2h
±O(h2)

∂2u
∂x2

∣∣∣∣
xi

=
ui−1−2ui+ui+1

h2 ±O(h2)

Ensuite, on multiplie à gauche par T−1 pour obtenir ∂0u
∂x0

∂1u
∂x1

∂2u
∂x2


|xi

=

 0 1 0
− 1

2h 0 + 1
2h

+ 1
h2 − 2

h2 + 1
h2


︸ ︷︷ ︸

= T−1

 ui−1

ui
ui+1

±
 0
O(h2)
O(h1+1)



On retrouve les résultats précédents pour une approximation des dérivées
première et seconde avec un schéma centré de trois points.
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Opérateurs de dérivation
Méthode générale

Si on considère une approximation décentrée avec r = 4, on obtient

ui−2 =
(2h)0

0!

∂0u

∂x0

∣∣∣∣∣
xi

−
(2h)1

1!

∂1u

∂x1

∣∣∣∣∣
xi

+
(2h)2

2!

∂2u

∂x2

∣∣∣∣∣
xi

−
(2h)3

3!

∂3u

∂x3

∣∣∣∣∣
xi

±O(h
4
)

ui−1 =
(1h)0

0!

∂0u

∂x0

∣∣∣∣∣
xi

−
(1h)1

1!

∂1u

∂x1

∣∣∣∣∣
xi

+
(1h)2

2!

∂2u

∂x2

∣∣∣∣∣
xi

−
(1h)3

3!

∂3u

∂x3

∣∣∣∣∣
xi

±O(h
4
)

ui =
(0h)0

0!

∂0u

∂x0

∣∣∣∣∣
xi

+
(0h)1

1!

∂1u

∂x1

∣∣∣∣∣
xi

+
(0h)2

2!

∂2u

∂x2

∣∣∣∣∣
xi

+
(0h)3

3!

∂3u

∂x3

∣∣∣∣∣
xi

±O(h
4
)

ui+1 =
(1h)0

0!

∂0u

∂x0

∣∣∣∣∣
xi

+
(1h)1

1!

∂1u

∂x1

∣∣∣∣∣
xi

+
(1h)2

2!

∂2u

∂x2

∣∣∣∣∣
xi

+
(1h)3

3!

∂3u

∂x3

∣∣∣∣∣
xi

±O(h
4
)



Introduction Equation diffusion Equation modifiée Opérateurs dérivation Conditions limites

Opérateurs de dérivation
Méthode générale

Sous forme matricielle, ceci s’écrit
ui−2

ui−1

ui
ui+1

 =


(2h)0

0! − (2h)1

1!
(2h)2

2! − (2h)3

3!
(1h)0

0! − (1h)1

1!
(1h)2

2! − (1h)3

3!
(0h)0

0! + (0h)1

1!
(0h)2

2! + (0h)3

3!
(1h)0

0! + (1h)1

1!
(1h)2

2! + (1h)3

3!


︸ ︷︷ ︸

≡ T


∂0u
∂x0

∂1u
∂x1

∂2u
∂x2

∂3u
∂x3


|xi

±


O(h4)
O(h4)
O(h4)
O(h4)



Dans ce cas, la matrice des coefficients de Taylor vaut

T =


1 −2h 4h2

2 − 8h3

6

1 −h h2

2 −h
3

6
1 0 0 0

1 +h h2

2 +h3

6


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Opérateurs de dérivation
Méthode générale

Ensuite, on multiplie à gauche par T−1 pour obtenir
∂0u
∂x0

∂1u
∂x1

∂2u
∂x2

∂3u
∂x3


|xi

=


0 0 1 0

+ 1
6h − 6

6h + 3
6h + 2

6h
0 + 1

h2 − 2
h2 + 1

h2

− 1
h3 + 3

h3 − 3
h3 + 1

h3


︸ ︷︷ ︸

= T−1


ui−2

ui−1

ui
ui+1

±


0
O(h3)
O(h2)
O(h1)



On en déduit donc les schémas de dérivation

∂1u

∂x1

∣∣∣∣
xi

' 2ui+1 + 3ui − 6ui−1 + ui−2

6h

∂3u

∂x3

∣∣∣∣
xi

' ui+1 − 3ui + 3ui−1 − ui−2

h3

∂2u

∂x2

∣∣∣∣
xi

' ui+1 − 2ui + ui−1

h2
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Opérateurs de dérivation
Méthode générale

• Ordre de dérivation maximal calculable

nmax = r− 1

• Ordre de précision pour la dérivée d’ordre n (schéma non-centré)

ε = O(hr−n)

• Ordre de précision pour la dérivée d’ordre n (schéma centré)

ε = O(hr−n+1), n pair

ε = O(hr−n), n impair
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Conditions aux limites
Principaux types

{
A(u) = f

u ∈ Ck(Ω), + C.L.

• Conditions de Dirichlet

u = D(x, t), sur ∂ΩD

• Conditions de Neumann

∂u

∂n
= ∇u · n = N(x, t), sur ∂ΩN

• Conditions périodiques
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Conditions aux limites
Conditions de Dirichlet

u1 = α up = β
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Conditions aux limites
Conditions de Neumann (flux) -

Schéma décentré d’ordre 1

∂u
∂x

∣∣∣
xi

=
ui+1−ui

h
±O(h)

∂u
∂x

∣∣∣
xi

=
ui−ui−1

h
±O(h)

∂u

∂x
· n
∣∣∣∣
x1

= α ' u1 − u2

h
∂u

∂x
· n
∣∣∣∣
xp

= β ' up − up−1

h



Introduction Equation diffusion Equation modifiée Opérateurs dérivation Conditions limites

Conditions aux limites
Conditions de Neumann (flux) -

Schéma décentré d’ordre 2

∂u
∂x

∣∣∣
xi

=
−3ui+4ui+1−ui+2

2h
±O(h2)

∂u
∂x

∣∣∣
xi

=
+3ui−4ui−1+ui−2

2h
±O(h2)

∂u

∂x
· n
∣∣∣∣
x1

= α

' +3u1 − 4u2 + u3

2h

∂u

∂x
· n
∣∣∣∣
xp

= β

' +3up − 4up−1 + up−2

2h
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Conditions aux limites
Conditions périodiques

p ≡ 0 i ≡ i+ kp, k ∈ Z p+ 1 ≡ 1

∂nu

∂xn

∣∣∣∣
x1

=
∂nu

∂xn

∣∣∣∣
xp

, ∀n ∈ N
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Conditions aux limites
Conditions périodiques

∂u
∂x

∣∣∣
xi
'

ui+1−ui−1
2h

∂2u
∂x2

∣∣∣∣
xi

'
ui−1−2ui+ui+1

h2

u0 ≡ up up+1 ≡ u1

• Dérivée première
Schéma centré

∂u

∂x

∣∣∣∣
x1

' u2 − up

2h

∂u

∂x

∣∣∣∣
xp

' u1 − up−1

2h

D
◦
,x =

1

2h


0 +1 −1
−1 0 +1

−1 0 +1
−1 0 +1

+1 −1 0



• Dérivée seconde
Schéma centré

∂2u

∂x2

∣∣∣∣
x1

' up − 2u1 + u2

h2

∂2u

∂x2

∣∣∣∣
xp

' up−1 − 2up + u1

h2

D
◦
,xx =

1

h2


−2 +1 +1
+1 −2 +1

+1 −2 +1
+1 −2 +1

+1 +1 −2


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