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Série III

1 Equations aux dérivées partielles du second degré

Déterminer le caractère mathématique des équations suivantes et l’équation de leurs caractéristiques.
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2 Equations de Prandtl-Glauert

On rappelle les équations de Prandtl-Glauert vues en cours

(1 − Ma2)
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où la seconde équation exprime le caractère irrotationel du champ de vitesse u′ qui dérive par conséquent
du potentiel φ de telle sorte que

u′ = (u′x, u
′
y) = ∇φ. (3)

1. En utilisant la relation (3), dériver l’équation du potentiel à partir des équations de Prandtl-Glauert.

2. Déterminer le caractère mathématique ainsi que les courbes caractéristiques de l’équation du po-
tentiel en fonction du nombre de Mach.

3. Comparer ces résultats avec ceux issus de l’analyse du système d’équations (1)-(2).
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