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Introduction

Caractéristiques des méthodes de discrétisation

Etant donné les contraintes de la simulation,

® probleme physique

Nombre de Reynolds, de Mach, capillaire. ..

® précision requise

quantités intégrales/locales, tendances/valeurs absolues

® ressources et temps de calcul a disposition

calculateur parraléle, machine de bureau

quelle est la méthode numérique la plus adaptée?
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Introduction

Caractéristiques des méthodes de discrétisation

Les méthodes numériques difféerent en termes de
® complexité algorithmique

® espace mémoire requis (dépend aussi de I'implémentation)

scalabilité algorithmique (paralélisation)
® précision pour un probleme donné

Il est important de connaitre une large gamme de méthodes numérique
pour choisir la plus adaptée a chaque situation.
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Introduction
Espaces fonctionnels
® Espace de continuité
cr Q) = {u Q%R‘ER Vn<k}

® Espace de Lebesgue

LQ(Q):{u:Q—HR

Q

® Espace de Sobolev

lu(z)[2 dV < oo}

H*Q) = {u Q—HR‘ € L*(Q), vngk}
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Introduction

Distributions

® Produit scalaire

(u,v):/ﬂu'vdv

® Distribution de Dirac

(u, 5(a)) = /Qu-é(a) AV = ua)

“Idée de la preuve”

Xo . a+d/2 ) u(a)5
/x1 u(x)d(a) doe = %1_% 5 e u(x) de = (%1_13(1) 5 = u(a)
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Formulation des équations aux dérivées partielles

Formulation forte

On considere les équations ou systemes d'équations aux dérivées
partielles pouvant s'écrire sous la forme

ou+ Alu) = f
conditions limites et initiales

avec la solution

u € C*(Q)

La classe de continuité de la solution dépend de I'ordre de dérivation
maximal k dans I'opérateur spatial A(u).
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Formulation des EDP

Formulation intégrale

Oru + A(u) = f
Jolf = A@)] v dV =0

La formulation intégrale s'obtient par produit scalaire avec une fonction
test (pondération)

/[atu—l—A(u)]de:/f-'udV, Yo € L*(R2)
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Formulation des EDP

Formulation intégrale

(u,v) = [qu-vdV
JoPtu+ A(w)] - v dV = [q f-vdV

ce qui s'écrit formellement
(Oru,v) + (A(u),v) = (f,v), Yve L*(Q)
conditions limites et initiales

avec la solution

u € H*(Q)
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Formulation des EDP

Formulation faible

La formulation faible s’obtient par

Bases Classes Méthodes Epilogue
o]
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Jalbtu+ A()] - vdV = [o f v dV
fQ(V‘F)‘g+F~ngV:fan(FAn)AgdS
Jq@V - -FdV = [jo F-ndS

1. expression du terme spatial sous forme de flux

2. intégration par partie du terme spatial

On obtient donc successivement

/[8tu+V~F(u)]-'vdV:/f-vdV, Yo € L*()
Q — Q

= A(u)

o

/ Opu-v—F(u)-Vou dV—l—/
Q

F(u)nwvdS = / fudV, YveH(Q)
Q
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Formulation EDP

Formulation faible

JoOtu-v = F(u) - Vo dV + [5q F(u) -n-vdS =
fo<'udV

Puis, en introduisant la forme bilinéaire

A(u,v):—/F(u)-VvdV+ F(u) n-vdS
Q oQ

la formulation faible du probléme devient

{ (Oyu,v) + A(u,v) = (f,v), Yve H(Q)

conditions limites et initiales

avec la solution

ue H1(Q)
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Formulation des équations aux dérivées partielles

Equation de diffusion - Formulation forte

On consideére I'équation de diffusion instationnaire
oou —vV3u = f
——
= A(u)
conditions limites et initiales

avec la solution
u € C%(Q)
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Formulation des équations aux dérivées partielles

Equation de diffusion - Formulation intégrale

Le produit scalaire avec une fonction test donne la formulation intégrale

(Oru,v) — /ﬂ vV2u-vdV = (f,v), Vv L*()

= (A(uw),v)

conditions limites et initiales

avec la solution

u € H*(Q)
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Formulation des équations aux dérivées partielles

Equation de diffusion - Formulation faible
En reformulant le terme spatial sous forme de flux
A(u) = —vViu =V . (-vVu)

et en intégrant par partie, on obtient la formulation faible

(atu,v)—l—/VVu-VvdV— vWVu-n-vdS=(fv), YveH!
Q 90

= A(u,v)

conditions limites et initiales

avec la solution
uec H(Q)
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. ¢i(w)
Interpolation

Définitions

Ti—1 Ti Ti41

® Base d'interpolation

B:{¢17¢27"',¢p7"'}

® Expression dans la base

esp. modal

p A —

(@,t) => wt) éix) +  7(x,t)p)
—— = ——
esp. physique troncature a l’ordre p
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Interpolation .
u(z, ) = TP, u; ()6 (@)+7(x, t,p)
Définitions

® Approximation

Troncature de la série

w(z,t) ~ up(x,t) = Zﬂj(t)fbj(l’)

e Convergence
lim 7(z,t,p) =0,

p—o0
c'est-a-dire
lim w(x,t) — up(x,t) =0

p—o0
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Interpolation
Définitions

® Noeuds de collocation

X = {Xl,XQ,..

® Valeurs nodales

esp. nodal

Bases Classes Méthodes Epilogue
o] o] o] o]
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un (e, t) = SP_ uy (69 (2)
. ,Xp}, x; € Q)

esp. modal

~

w(t) =up(x,t) = Z u;(t)  ¢j(xi)
7j=1
=% u . [®];=9¢;(xi)
nodal modal
® QOpérateur de transformation
espace nodal <> espace modal
u=® 'u=du
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Interpolation

Base modale de Fourier

3

{

® Base ) ‘ R T {
9; = cos(lja) Hsin(lyz) = €75 A/ {
kj = 2%‘7 jEZ \ S U / {

. . e {

e Approximation n . |
p/2-1 ‘ ° VA n /05 {‘

COEID DI OC S (FAVAVAVAVAY:
j=-p/2 Qn i/w\{z{\/ {‘




Introduction Formulation EDP Interpolation Bases Classes Méthodes Epilogue

[e]e] o] [e]e]e} o] o] o] o]
[e]e] [e]e) oce [e]e] [e]e]e] o]
[e]e) [e]e]e} [e]e]e} [e]e)
000 o] (e]e)
Interpolation
Base modale de Fourier
® Base
- 3 . 181 . — oik; |
¢ = cos(k;x)+isin(kjr) = ™ Lo e
2mj . o
k;j = T JEZ _
® Approximation ' N
p/2-1 '
up(z,t) = ) w(t)eT
j=-p/2 ‘
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Interpolation

up (x,t) = 25:1 Ej(t)¢j(x)
Dérivation

® Approximation
P
Dpun(z,t) = ;(t) dugy (@)
j=1

® Valeurs nodales

ui@( ) 0 Uh((L' t |$ =X; Zu a:¢j|w:x.;

u, =® ,u, [®,.];;=ds¢jlo=x
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Interpolation S

Dérivation

® Opérateurs nodaux et modaux

U, = D,wu = ‘I’,:EE = (I),azgu
u, =D u=®®% ,u

® Relations entre opérateurs nodaux et modaux
Valables pour un opérateur discret quelconque
I
~=
D,-%,2-28%,2-2D 2
D,=%%,=&%,%®=3D,&
? ~—~

I
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Interpolation

Dérivation

® Dérivée seconde

D,,=D,D,=D?
D,,=D,D, =D’
® Dérivées d'ordre supérieur
D,,=D,-....D, =D
D,=D,-...-D, =D},

Méthodes Epilogue
o] o]

o]
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Base nodale de Lagrange
® Base
P T —X;
X3
¢i(x)= [ ——
T, XX
i=1,i#j

® Cardinalité
(@i = ¢ (xi) = by

e Conséquence

s
|
[=

=1 —
——

base nodale

Bases

(e}

o

%

%

9

Classes Méthodes Epilogue
o] o] o]

[e]e]e] o]

[e]e]e} [e]e)

o] (e]e)

u; (t) = Z?:l u; (1) dj(xq)

u=%u
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Formulation EDP Interpolation

000
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Base modale de Chebyshev

® Base

G (x) = 20¢;(x) —

d1(x) =1, ¢o(x) =x

® Noeuds de collocation

X = {x;|z+cos("U=) = 0}, i

p—1

e Conséquence

P+ — u#u

Bases

[ 1o}

L

Classes Méthodes Epilogue
o] o] o]

[e]e]e] o]

[e]e]e} [e]e)

o] (e]e)

u; (t) = Z?:l u; (1) dj(xq)

u=%u
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u= $Pu

Base modale de Fourier

® Base 90% I {
¢; = cos(k;z) +isin(k,;z) = ™" Tl {
k=2 ey i A
oL NN N

® Noeuds de collocation N A A {
X = {xiJz — 1)—|—1 =0},i=1,...,p 90 FANTAWAN {

® Conséquence °°R/ : \ / 5 {
41 > utu f\%\/\/\/\\{
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Classes de méthodes de discrétisation

Définition

® Formulation des équations

Forte, intégrale, faible

® Choix des fonctions test

Principales classes
® Méthodes de collocation
® Méthodes de Galerkin (base continue/discontinue)

® Méthodes de Petrov-Galerkin (base continue/discontinue)
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Classes de méthodes un(@,t) = P, u (06, (@)

1, 6(a)) = -d(a) dV = u(a
Méthodes de collocation (w @) = Jou-b) @

® Formulation intégrale
(Opu,v) + (A(u),v) = (f,v), Yo e L*(Q)
® Distributions de Dirac aux noeuds de collocation
v; = 0(x;)
® Approximation
(Orun, 6(x:)) + (A(un), 0(xi)) = (f,0(xi)), Vi

U (%) + A(up)|o=x, = fa(xi), Vi
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Classes de méthodes

2 —
Otu —v Iy, u=f

. . . ip (xi) + A(up)lo=x; = fr(xi
Méthodes de collocation - Eq. diffusion e Alun)la = = InG)

® Formulation intégrale
/[&u—u@imu] -vdV:/f-vdV7 Yo € L3(Q)
Q Q
® Approximation et fonctions test

/ [Opup, — v 02 up] - 6(x;) dV = / fr0(x;)dV, Vi
Q Q

uh(xi) -V 83muh|ﬂ7:)<i = fh(xi)7 Vi
Ainsi,

fli — VU gx = fl', Vi
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Ve
Classes de méthodes
W — VWi 00 =15

Méthodes de collocation - Equation de diffusion

Sous forme matricielle, ceci devient
a—vD u="f

ce qui est de la forme générale

Mu + Au = Mf

M =1, A=-vD,,

Méthode collocation
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Classes de méthodes

1) = SP_ u; (065 (x)
Méthodes de Petrov-Galerkin

® Formulation faible
(Opu,v) + A(u,v) = (f,v), Vv e HY(Q)

® Fonctions test et variables

p
Z , UhEUhCHl(Q)
p
Z .%' UhEVhCHl(Q)

® Approximation

(Opun, vn) + A(un, vn) = (fa,vn), Yop €V
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A (Otup,vp) + A(up, vp) = (frsvn)
Classes de méthodes o B 06,
Méthodes de Petrov-Galerkin vp(z,t) = 38 v ()Y (x)

En utilisant I'expression des fonctions test, on obtient
p p p
Orun, Y _vithy) + Alun, > vitby) = (fr D Vi), VYou € Vi,
j=1 j=1 i=1

Puis, par linéarité, on peut écrire

1% p
Z atuhvw] + ZV] uha¢] Z fh,% Y € Vy

j=1

ce qui est équivalent a

(Opun, Vi) + Alun, i) = (fr,0i), Vi
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A (Otup,vp) + A(up, vp) = (frsvn)
Classes de méthodes o B 06,
Méthodes de Petrov-Galerkin vp(z,t) = 38 v ()Y (x)

En procédant de la méme maniére pour uy, on obtient les équations
semi-discrétes

p p
> iy ¢J,wz+2ug (65, s Z (65,0, Vi
j=1 j=1 j=1

et sous forme matricielle on a

|Mu + Au = Mf |

avec

Mlij = (¢5,%i),  [Alij = A, i)
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Classes de méthodes M + Au = Mf

; . M]ij = (¢, 9%i), [Alij = Alj, i)
Méthodes de Galerkin

La méthode de Galerkin est un cas particulier de la méthode de
Petrov-Galerkin qu’on obtient en utilisant la méme base pour les
fonctions test et la variable

un(w,t) = > 1;(t)g;(x), un € Up C H(Q)
vh(xat) = Zvj(t)¢j(x)> vy, € V), C HI(Q)

.
I
—

On a ainsi

M];; = (¢5,9:), [Alij = Al9;, bi)
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Méthodes de discrétisation classiques

Définition
® Choix de la classe (formulation, fonctions test)

® Choix de la base d'interpolation

Principales méthodes
® FEléments finis
® Différences finies

® \olumes finis
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Méthodes classiques

Méthode des éléments finis

® Formulation faible
(Opu,v) + A(u,v) = (f,v), Vv e HY(Q)
® Fonctions test
v; = ¢i()
® |nterpolation des champs
p

un(e,t) =y u;(t)é;(2)

=1
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Méthodes classiques !

Méthode des différences finies

Ti—1 T Ti+1

® Formulation intégrale
(Opu,v) + (A(u),v) = (f,v), Yo e L*(Q)

® [Fonctions test
v; = 0(x;)

® |nterpolation des champs

(1) = (u(z,1),0(x5))
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Classes Méthodes Epilogue
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Méthodes classiques Ui (1) = (u(@, ), 6(xs))
q u(z,t) =30 u;(0);(x)+7(x,t,p)
Méthode des différences finies D gu=®,;%u

® Champs connus aux points de collocation uniquement

® Base d'interpolation non-définie

e Définition des opérateurs de dérivation discrets avec des séries de
Taylor

1 n nu
u(z,t) = Z (@—x)" 0

n % + T(x,t,]ﬁ')

T=X;



Introduction Formulation EDP Interpolation

(e}
(e}

Bases Classes Méthodes Epilogue
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Ve Ll 1
Méthodes classiques
Méthode des volumes finis Ti—1| Ti |Tit1
Q

® Formulation faible
(Oru,v) + A(u,v) = (fv), Yoe HY(Q)

® Fonctions test
v = ’H(Qz)
® [nterpolation des champs

p

un(z,t) = > wH(Q)

Jj=1
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Méthodes de discrétisation classiques

Méthode des volumes finis

De maniére générale, la formulation faible s'écrit

/8tu~v—F(u)~8mvdV+/ F(u)'vndS:/f'vdV, Vv
Q o0 Q

Par additivité de I'intégration, on a

Z/ Oru-v;— )av,dv+ mF() vi nZdS—Z/ frvi dv;

On obtient ainsi la formulation propre aux volumes finis

/ 6tudVi+/ F(u)-nidSiz/ fdvy, i
Qi 09 Q
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Conclusion

a(xi)
1
e Différences finies

Distribution de Dirac aux points de collocation (fonctions test) s °

® \olumes finis

Distribution de Heaviside sur chaque volume (fonctions test et interpolation)

® Eléments finis 1

Base polynomiale sur chaque élément (fonctions test et interpolation)
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