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Méthodes de Galerkin

Méthodes de discrétisation classiques
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Introduction
Caractéristiques des méthodes de discrétisation

Etant donné les contraintes de la simulation,

• problème physique
Nombre de Reynolds, de Mach, capillaire. . .

• précision requise
quantités intégrales/locales, tendances/valeurs absolues

• ressources et temps de calcul à disposition
calculateur parralèle, machine de bureau

quelle est la méthode numérique la plus adaptée?
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Introduction
Caractéristiques des méthodes de discrétisation

Les méthodes numériques diffèrent en termes de

• complexité algorithmique

• espace mémoire requis (dépend aussi de l’implémentation)

• scalabilité algorithmique (paralélisation)

• précision pour un problème donné

Il est important de connâıtre une large gamme de méthodes numérique
pour choisir la plus adaptée à chaque situation.
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Introduction
Espaces fonctionnels

• Espace de continuité

Ck(Ω) =

{
u : Ω→ R

∣∣∣∣∂nu∂xn
∈ R, ∀n ≤ k

}
• Espace de Lebesgue

L2(Ω) =

{
u : Ω→ R

∣∣∣∣∫
Ω

|u(x)|2 dV <∞
}

• Espace de Sobolev

Hk(Ω) =

{
u : Ω→ R

∣∣∣∣∂nu∂xn
∈ L2(Ω), ∀n ≤ k

}
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Introduction
Distributions

• Produit scalaire

(u, v) =

∫
Ω

u · v dV

• Distribution de Dirac

(u, δ(a)) =

∫
Ω

u · δ(a) dV = u(a)

“Idée de la preuve”∫ x2

x1

u(x)δ(a) dx = lim
δ→0

1

δ

∫ a+δ/2

a−δ/2
u(x) dx = lim

δ→0

u(a)δ

δ
= u(a)
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Formulation des équations aux dérivées partielles
Formulation forte

On considère les équations ou systèmes d’équations aux dérivées
partielles pouvant s’écrire sous la forme{

∂tu +A(u) = f

conditions limites et initiales

avec la solution

u ∈ Ck(Ω)

La classe de continuité de la solution dépend de l’ordre de dérivation
maximal k dans l’opérateur spatial A(u).
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Formulation des EDP
Formulation intégrale

∂tu + A(u) = f∫
Ω[f − A(u)] · v dV = 0

La formulation intégrale s’obtient par produit scalaire avec une fonction
test (pondération)∫

Ω

[∂tu +A(u)] · v dV =

∫
Ω

f · v dV, ∀v ∈ L2(Ω)
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Formulation des EDP
Formulation intégrale

(u, v) =
∫
Ω u · v dV∫

Ω[∂tu + A(u)] · v dV =
∫
Ω f · v dV

ce qui s’écrit formellement{
(∂tu,v) + (A(u),v) = (f ,v), ∀v ∈ L2(Ω)

conditions limites et initiales

avec la solution

u ∈ Hk(Ω)
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Formulation des EDP
Formulation faible

∫
Ω[∂tu + A(u)] · v dV =

∫
Ω f · v dV∫

Ω(∇ ·F ) · g +F ·∇g dV =
∫
∂Ω(F ·n) · g dS∫

Ω ∇ · F dV =
∫
∂Ω F · n dS

La formulation faible s’obtient par

1. expression du terme spatial sous forme de flux

2. intégration par partie du terme spatial

On obtient donc successivement∫
Ω

[∂tu + ∇ · F (u)︸ ︷︷ ︸
= A(u)

] · v dV =

∫
Ω

f · v dV, ∀v ∈ L2(Ω)

∫
Ω

∂tu·v−F (u)·∇v dV+

∫
∂Ω

F (u)·n·v dS =

∫
Ω

f ·v dV, ∀v ∈ H1(Ω)
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Formulation EDP
Formulation faible

∫
Ω ∂tu · v − F (u) ·∇v dV +

∫
∂Ω F (u) · n · v dS =∫

Ω f · v dV

Puis, en introduisant la forme bilinéaire

A(u,v) = −
∫

Ω

F (u) ·∇v dV +

∫
∂Ω

F (u) · n · v dS

la formulation faible du problème devient{
(∂tu,v) +A(u,v) = (f ,v), ∀v ∈ H1(Ω)
conditions limites et initiales

avec la solution

u ∈ Hk−1(Ω)
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Formulation des équations aux dérivées partielles
Equation de diffusion - Formulation forte

On considère l’équation de diffusion instationnaire
∂tu−ν∇2u︸ ︷︷ ︸

= A(u)

= f

conditions limites et initiales

avec la solution

u ∈ C2(Ω)
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Formulation des équations aux dérivées partielles
Equation de diffusion - Formulation intégrale

Le produit scalaire avec une fonction test donne la formulation intégrale
(∂tu, v)−

∫
Ω

ν∇2u · v dV︸ ︷︷ ︸
= (A(u),v)

= (f, v), ∀v ∈ L2(Ω)

conditions limites et initiales

avec la solution
u ∈ H2(Ω)
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Formulation des équations aux dérivées partielles
Equation de diffusion - Formulation faible

En reformulant le terme spatial sous forme de flux

A(u) = −ν∇2u = ∇ · (−ν∇u)

et en intégrant par partie, on obtient la formulation faible
(∂tu,v) +

∫
Ω

ν∇u ·∇v dV −
∫
∂Ω

ν∇u · n · v dS︸ ︷︷ ︸
= A(u,v)

= (f, v), ∀v ∈ H1

conditions limites et initiales

avec la solution
u ∈ H1(Ω)
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Interpolation
Définitions

• Base d’interpolation

B = {φ1, φ2, . . . , φp, . . .}

• Expression dans la base

u(x, t)︸ ︷︷ ︸
esp. physique

=

p∑
j=1

esp. modal︷ ︸︸ ︷
uj(t) φj(x) + τ(x, t,p)︸ ︷︷ ︸

troncature à l′ordre p
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Interpolation
Définitions

u(x, t) =
∑p

j=1 uj(t)φj(x)+τ(x, t, p)

• Approximation
Troncature de la série

u(x, t) ' uh(x, t) =

p∑
j=1

uj(t)φj(x)

• Convergence
lim

p→∞
τ(x, t,p) = 0,

c’est-à-dire
lim

p→∞
u(x, t)− uh(x, t) = 0
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Interpolation
Définitions

uh(x, t) =
∑p

j=1 uj(t)φj(x)

• Noeuds de collocation

X = {x1, x2, . . . , xp}, xi ∈ Ω

• Valeurs nodales

esp. nodal︷︸︸︷
ui(t) = uh(xi, t) =

p∑
j=1

esp. modal︷ ︸︸ ︷
uj(t) φj(xi)

u︸︷︷︸
nodal

= Φ u︸︷︷︸
modal

, [Φ]ij = φj(xi)

• Opérateur de transformation
espace nodal↔ espace modal

u = Φ−1u ≡ Φu
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Interpolation
Base modale de Fourier

• Base

φj = cos(kjx)+i sin(kjx) = eikjx

kj =
2πj

L
, j ∈ Z

• Approximation

uh(x, t) =

p/2−1∑
j=−p/2

uk(t)eikjx
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Interpolation
Base modale de Fourier

• Base

φj = cos(kjx)+i sin(kjx) = eikjx

kj =
2πj

L
, j ∈ Z

• Approximation

uh(x, t) =

p/2−1∑
j=−p/2

uk(t)eikjx
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Interpolation
Dérivation

uh(x, t) =
∑p

j=1 uj(t)φj(x)

• Approximation

∂xuh(x, t) =

p∑
j=1

uj(t) dxφj(x)

• Valeurs nodales

ui,x(t) = ∂xuh(x, t)|x=xi =

p∑
j=1

uj(t) dxφj |x=xi

u,x = Φ,xu, [Φ,x]ij = dxφj |x=xi
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Interpolation
Dérivation

u,x = Φ,xu

u = Φ−1u ≡ Φu

• Opérateurs nodaux et modaux

u,x = D,xu = Φ,xu = Φ,xΦu

u,x = D,xu = ΦΦ,xu

• Relations entre opérateurs nodaux et modaux
Valables pour un opérateur discret quelconque

D,x = Φ,xΦ =

I︷︸︸︷
ΦΦ Φ,xΦ = ΦD,xΦ

D,x = ΦΦ,x = ΦΦ,x ΦΦ︸︷︷︸
I

= ΦD,xΦ
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Interpolation
Dérivation

• Dérivée seconde

D,xx = D,xD,x = D2
,x

D,xx = D,xD,x = D2
,x

• Dérivées d’ordre supérieur

D,nx = D,x · . . . ·D,x = Dn
,x

D,nx = D,x · . . . ·D,x︸ ︷︷ ︸
n fois

= Dn
,x
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Bases
Base nodale de Lagrange

ui(t) =
∑p

j=1 uj(t)φj(xi)

u = Φu

• Base

φj(x) =

p∏
i=1,i6=j

x − xi
xj − xi

• Cardinalité

[Φ]ij = φj(xi) = δij

• Conséquence

Φ = I︸ ︷︷ ︸
base nodale

→ u = u
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Bases
Base modale de Chebyshev

ui(t) =
∑p

j=1 uj(t)φj(xi)

u = Φu

• Base

φ1(x) = 1, φ2(x) = x

φj+1(x) = 2xφj(x)− φj−1(x)

• Noeuds de collocation

X = {xi|x+cos(π(i−1)
p−1 ) = 0}, i = 1, . . . ,p

• Conséquence

Φ 6= I → u 6= u
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Bases
Base modale de Fourier

ui(t) =
∑p

j=1 uj(t)φj(xi)

u = Φu

• Base

φj = cos(kjx) + i sin(kjx) = eikjx

kj =
2πj

L
, j ∈ Z

• Noeuds de collocation

X = {xi|x− 2(i−1)
p + 1 = 0}, i = 1, . . . ,p

• Conséquence

Φ 6= I → u 6= u
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Classes de méthodes de discrétisation

Définition

• Formulation des équations
Forte, intégrale, faible

• Choix des fonctions test

Principales classes

• Méthodes de collocation

• Méthodes de Galerkin (base continue/discontinue)

• Méthodes de Petrov-Galerkin (base continue/discontinue)
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Classes de méthodes
Méthodes de collocation

uh(x, t) =
∑p

j=1 uj(t)φj(x)

(u, δ(a)) =
∫
Ω u · δ(a) dV = u(a)

• Formulation intégrale

(∂tu, v) + (A(u), v) = (f, v), ∀v ∈ L2(Ω)

• Distributions de Dirac aux noeuds de collocation

vi = δ(xi)

• Approximation

(∂tuh, δ(xi)) + (A(uh), δ(xi)) = (f, δ(xi)), ∀i

u̇h(xi) +A(uh)|x=xi
= fh(xi), ∀i
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Classes de méthodes
Méthodes de collocation - Eq. diffusion

∂tu− ν ∂2
xxu = f

u̇h(xi) + A(uh)|x=xi
= fh(xi)

• Formulation intégrale∫
Ω

[∂tu− ν ∂2
xxu] · v dV =

∫
Ω

f · v dV, ∀v ∈ L2(Ω)

• Approximation et fonctions test∫
Ω

[∂tuh − ν ∂2
xxuh] · δ(xi) dV =

∫
Ω

fh · δ(xi) dV, ∀i

u̇h(xi)− ν ∂2
xxuh|x=xi

= fh(xi), ∀i

Ainsi,
u̇i − ν ui,xx = fi, ∀i
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Classes de méthodes
Méthodes de collocation - Equation de diffusion

u̇i − ν ui,xx = fi

Sous forme matricielle, ceci devient

u̇− νD,xxu = f

ce qui est de la forme générale

Mu̇ + Au = Mf

où
M = I,︸ ︷︷ ︸

Méthode collocation

A = −νD,xx
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Classes de méthodes
Méthodes de Petrov-Galerkin

uh(x, t) =
∑p

j=1 uj(t)φj(x)

• Formulation faible

(∂tu, v) +A(u, v) = (f, v), ∀v ∈ H1(Ω)

• Fonctions test et variables

uh(x, t) =

p∑
j=1

uj(t)φj(x), uh ∈ Uh ⊂ H1(Ω)

vh(x, t) =

p∑
j=1

vj(t)ψj(x), vh ∈ Vh ⊂ H1(Ω)

• Approximation

(∂tuh, vh) +A(uh, vh) = (fh, vh), ∀vh ∈ Vh
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Classes de méthodes
Méthodes de Petrov-Galerkin

(∂tuh, vh) +A(uh, vh) = (fh, vh)

uh(x, t) =
∑p

j=1 uj(t)φj(x)

vh(x, t) =
∑p

j=1 vj(t)ψj(x)

En utilisant l’expression des fonctions test, on obtient

(∂tuh,

p∑
j=1

vjψj) +A(uh,

p∑
j=1

vjψj) = (fh,

p∑
j=1

vjψj), ∀vh ∈ Vh

Puis, par linéarité, on peut écrire

p∑
j=1

vj (∂tuh, ψj) +

p∑
j=1

vj A(uh, ψj) =

p∑
j=1

vj (fh, ψj), ∀vh ∈ Vh

ce qui est équivalent à

(∂tuh, ψi) +A(uh, ψi) = (fh, ψi), ∀ψi
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Classes de méthodes
Méthodes de Petrov-Galerkin

(∂tuh, vh) +A(uh, vh) = (fh, vh)

uh(x, t) =
∑p

j=1 uj(t)φj(x)

vh(x, t) =
∑p

j=1 vj(t)ψj(x)

En procédant de la même manière pour uh, on obtient les équations
semi-discrètes

p∑
j=1

u̇j(φj , ψi) +

p∑
j=1

ujA(φj , ψi) =

p∑
j=1

fj(φj , ψi), ∀ψi

et sous forme matricielle on a

Mu̇ + Au = Mf

avec
[M]ij = (φj , ψi), [A]ij = A(φj , ψi)
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Classes de méthodes
Méthodes de Galerkin

Mu̇ + Au = Mf

[M]ij = (φj , ψi), [A]ij = A(φj , ψi)

La méthode de Galerkin est un cas particulier de la méthode de
Petrov-Galerkin qu’on obtient en utilisant la même base pour les
fonctions test et la variable

uh(x, t) =

p∑
j=1

uj(t)φj(x), uh ∈ Uh ⊂ H1(Ω)

vh(x, t) =

p∑
j=1

vj(t)φj(x), vh ∈ Vh ⊂ H1(Ω)

On a ainsi
[M]ij = (φj , φi), [A]ij = A(φj , φi)
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Méthodes de discrétisation classiques

Définition

• Choix de la classe (formulation, fonctions test)

• Choix de la base d’interpolation

Principales méthodes

• Eléments finis

• Différences finies

• Volumes finis
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Méthodes classiques
Méthode des éléments finis

• Formulation faible

(∂tu, v) +A(u, v) = (f, v), ∀v ∈ H1(Ω)

• Fonctions test
vi = φi(x)

• Interpolation des champs

uh(x, t) =

p∑
j=1

uj(t)φj(x)
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Méthodes classiques
Méthode des différences finies

• Formulation intégrale

(∂tu, v) + (A(u), v) = (f, v), ∀v ∈ L2(Ω)

• Fonctions test
vi = δ(xi)

• Interpolation des champs

uj(t) = (u(x, t), δ(xj))



Introduction Formulation EDP Interpolation Bases Classes Méthodes Epilogue

Méthodes classiques
Méthode des différences finies

ui(t) = (u(x, t), δ(xi))

u(x, t) =
∑p

j=1 uj(t)φj(x)+τ(x, t, p)

D,xu = Φ,xΦu

• Champs connus aux points de collocation uniquement

• Base d’interpolation non-définie

• Définition des opérateurs de dérivation discrets avec des séries de
Taylor

u(x, t) =

r−1∑
n=0

(x− xi)
n

n!

∂nu

∂xn

∣∣∣∣
x=xi

+ τ(x, t, r)
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Méthodes classiques
Méthode des volumes finis

• Formulation faible

(∂tu, v) +A(u, v) = (f, v), ∀v ∈ H1(Ω)

• Fonctions test
vi = H(Ωi)

• Interpolation des champs

uh(x, t) =

p∑
j=1

ujH(Ωj)
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Méthodes de discrétisation classiques
Méthode des volumes finis

De manière générale, la formulation faible s’écrit∫
Ω

∂tu · v − F (u) · ∂xv dV +

∫
∂Ω

F (u) · v n dS =

∫
Ω

f · v dV, ∀v

Par additivité de l’intégration, on a

p∑
i=1

∫
Ωi

∂tu·vi−F (u)·∂xvi︸︷︷︸
= 0

dVi+

∫
∂Ωi

F (u)· vi︸︷︷︸
= 1

ni dSi =

p∑
i=1

∫
Ωi

f ·vi dVi

On obtient ainsi la formulation propre aux volumes finis∫
Ωi

∂tu dVi +

∫
∂Ωi

F (u) · ni dSi =

∫
Ωi

f dVi, ∀i
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Conclusion

• Différences finies
Distribution de Dirac aux points de collocation (fonctions test)

• Volumes finis
Distribution de Heaviside sur chaque volume (fonctions test et interpolation)

• Eléments finis
Base polynomiale sur chaque élément (fonctions test et interpolation)
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