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Définition

On considére un systeme de n équations a n inconnues pouvant s'écrire

sous la forme

uy A A Ay
o U2 Agr Ag Aoy
| |7 5
Un Anl An2 Ann
= Uu = A
et de maniére équivalente comme
ou ou
— +A—=0
ox * oy

oy
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JuetrAZe =0
Découplage

On veut découpler le systeme pour faire apparaitre n équations
indépendantes. Pour cela on introduit les nouvelles variables r; telles que

=V =V

ou 0 ou 0 0
u Or u Or u;
or 0z or dy 0, Vi or;

Puis en multipliant 3 gauche par V!, on obtient

or or
DT iviavd =
ox +H/—’3y
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ou

) +A =0
ar
ﬁ"’Aay

_ Ou
V=%

du —
Gt +eft=0

Pour que le nouveau systeme soit découplé, il faut impérativement que

Ainsi, V doit diagonaliser A.

Dans ce cas, on obtient les n

recherchées

[VTIAV]; =
Ceci implique que

AVj = >\jVj
Vi; = [vsli

(97‘2‘

—+ X =0

dy

aussi appelées équations de Riemann.

équations d'advection indépendantes
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Courbes caractéristiques et invariants de Riemann

La différentielle totale de r; s'écrit

- 8’/‘1‘
- Oz

d?”i

dzr +

-
e Trigy =0

87‘1‘

oy dy

En posant dr; = 0 puis en divisant par dz, on obtient

((97’1' % am o
Or dx oy

0

En utilisant les équations de Riemann, on a donc

dx

d
dy _

)
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oz T 1. oz =0
c dz 3
N~
= X;
— 9u
V= or

Les variables r; sont donc invariantes sur une famille de courbes

caractéristiques telle que

Yy — \jx = const

Les variables r; sont les invariants de Riemann du systéme d'équations et
ils sont donnés par la relation

r:/Vfldu
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En fonction des valeurs propres de A,

® |e systeme est dit hyperbolique si
A €R, Vi
® |e systeme est dit elliptique si
reC, Vi
® le systéme est dit parabolique (ou hybride) si

Ji,\; € C
3j,\ €R
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Ecoulements idéaux compressibles
Equations de Prandtl-Glauert

Op+ V- (pv)=0
9 (pv) + V- (pvv) =V -0 + pg
de(peo) +V - (pegv) =V - (0 -v) +pg-v+V - ¢

® Plus d'inconnues que d'équations de conservation

® Introduction d'équations constitutives (modélisation)
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Ecoulements idéaux compressibles
Equations de Prandtl-Glauert

v = (Uoo + Uy) € + uy €

® Faibles perturbations ® Ecoulement stationnaire
Uy, Uy € Vo % =0
® Ecoulement irrotationnel ® Fluide parfait

Vxu =0 o=-pl, ¢=0
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Ecoulements idéaux compressibles gu 4 agu —o

. 9r L AT =0
Equations de Prandtl-Glauert = T Aoy

Avec ces hypotheses, les équations de conservation se réduisent a

/ 8/
(1—Ma2)%lj;+ai;:0, Mazzﬁ
% 8u;_0
ox oy

ol la seconde équation exprime le caractere irrotationel de I'écoulement.
Sous forme matricielle, avec 2 = Ma? — 1, 0ona

2 U
Ox \ u
~———

(5 )2 (%) -(8)

=u =A =u

< >8>
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Ecoulements idéaux compressibles 2= ( % ")
Av, = X;v,
Equations de Prandtl-Glauert T

A=v~lav
® Matrice des valeurs propres de A

A= ( +B/9 —?/9 )

® Matrice des vecteurs propres de A

1 -1/0 +1/8
V2(+1 +1 )

(-0 +1
v _<+9 +1
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Ecoulements idéaux compressibles o o
= or
Equations de Prandtl-Glauert v-1— ( 12 E )

® |nvariants de Riemann

—O’U/ +U/
r = v—1 _ T Yy
_/ du_(—i—@u;—&—u’ >

® Courbes caractéristiques
Aide —dy =0
dont on déduit que

& =x — 6y = const
n = a + 0y = const
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Ecoulements idéaux compressibles

Lien entre classification mathématique et physique

Nous avons vu que les valeurs propres sont données par

Ni=—2=+—'8
dz VvVMa? — 1

d 1
Y_ 4

Ainsi, lorsque

® Ma < 1 : écoulement subsonique, équation elliptique

Il existe deux familles de caractéristiques complexes conjugées

® Ma = 1 : écoulement sonique, équation parabolique

Il n'existe qu'une seule famille de caractéristiques réelles doubles

® Ma > 1 : écoulement supersonique, équation hyperbolique

Il existe deux familles de caractéristiques réelles
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Ecoulement supersonique - Equation hyperbolique

e (Caractéristiques

¢ =x — Oy = const
n =z + 0y = const

® |nvariants de Riemann

+0u;, + u; = const
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Ecoulement supersonique - Equation hyperbolique

AY

_ 00“5)“

caractéristiques

domaine de dépendance domaine d'influence
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Ecoulements idéaux compressibles

Ecoulement sonique - Equation parabolique

e Caractéristiques

¢ =x — Oy = const

n =z + 0y = const
® |nvariants de Riemann

+0u;, + u; = const

£, 1= const

s
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Ecoulements idéaux compressibles

Ecoulement sonique - Equation parabolique

AY

caractéristique double

Ve

domaine de dépendance S domaine d'influence

&, n = const
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Ecoulements idéaux compressibles

Ecoulement subsonique - Equation elliptique

e Caractéristiques

& =x — 0y = const
n =z + 0y = const

® |nvariants de Riemann

+60u;, + uy, = const
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Ecoulement subsonique - Equation elliptique

AY

domaine d'influence
domaine de dépendance

v&
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Conditions aux limites

Equation hyperbolique

Sur £ = x — Ay = const, on a
—0ul,(A) + uy (A) = —0u,(C) 4 u, (C) = const
Sur n = x + @y = const, on a

+0ul, (B) + uy, (B) = +0u;, (C) + u, (C) = const
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Conditions aux limites

Equation hyperbolique

(0 = (&) + o, (B)) + & (u (A) — uf (B))

() = £ (A) 1, (B)) + 5 (o (A) — ()

On peut donc déterminer les inconnues dans le triangle ABC en
connaissant seulement les valeurs sur C
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Conditions aux limites
Equation hyperbolique

AY

= CO“S)“

caractéristiques

domaine de dépendance

champ de détermination

® Données (conditions aux limites) nécessaires sur une partie de la
frontiere

® Correspond a un probleme d'évolution
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Conditions aux limites

Probléme bien posé

® Existence

La solution existe, et en particulier on a autant d'équations indépendantes que d'inconnues
® Unicité

La solution est uniquement déterminée par les données
® Dépendance

La solution dépend continiiment des données, c'est-a-dire que de faibles modications dans les données

produisent de faibles modications dans la solution
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Conditions aux limites

Equation parabolique

AY

caractéristiques doubles

domaine de dépendance

g C

champ de détermination

&, n = const

T
>

® Données (conditions aux limites) nécessaires sur une partie de la
frontiere

® Correspond a un probleme d'évolution
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Conditions aux limites
Equation elliptique

AY

C champ de détermination

® Données (conditions aux limites) nécessaires sur toute la frontiére

® Correspond a un probléeme d'équilibre

Epilogue
o

[e]
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Equations aux dérivées partielles du second degré

Définition
On considere I'équation générale
0%u 0%u 0%u

ou Ou
Z o yi9 2 R g
o2 + 68x8y +78y2 (m,y,u, 8:6’83/)

® Equation aux dérivées partielles du second ordre

Deux dimensions (z,y)
® 1 et y peuvent représenter des dimensions spatiales ou temporelles

® On suppose les coefficients «, 3, v non nuls
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Conditions limites Equations du 2°
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00 0000000 o 000 o
00 o 000
o o 0000000
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a u

2 2
u 5
ags + 28555

92y _
L. v +W93/2 =F
Probleme de Cauchy - Cas particulier

. e.g.
® En connaissant sur x = const = 0

ou 0%u
w0 = 1) > G-I Gr=1
donnée de Cauchy

® et en connaisant aussi la dérivée selon =

ou 0%u ,

donnée de Cauchy

® on peut résoudre notre équation au voisinage de x = const puisque
puisque par hypothése o # 0

Epilogue
o]
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Equations du 2
7 = const
Probleme de Cauchy - Cas général "

En choisissant un changement de coordonnées

f:gzﬁl(x,y), ’7:¢2($ay)

dont le jacobien s'écrit

9¢  9¢

— ox O
I=1 o o
ox oy

et en supposant qu'il soit inversible, c'est-a-dire

ety = 221k
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Equations du 2
7 = const
Probleme de Cauchy - Cas général "

I"équation fondamentale devient

RIS L ~@_ e, O O
ae? acan - % 5e an

avec

o (oeY o¢ o€ ¢
a-a(aw) +2ﬁ%@+ <8y>
5_ 080n 9y | 96 dn o¢ O
p= 8x8x+6<8x8y+8y8x)+ 6‘y8y

s (O Onon (o
7‘“(%) +2ﬁ€)x8y+ <8y
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52 -
oez T203gan T5,2 =F
N - 5 — o (25)2 2¢ 9g 3
Probléme de Cauchy - Cas général a=a(§s) +2855 55+ (55 )

&

. e.g.
® En connaissant sur une courbe £ = const =" 0

a ! 82 1!
w(0,n) = f(n)  — %:f, 8—;;:10

—_——
donnée de Cauchy

® et en connaissant aussi la dérivée selon &

ou 0u ,
({75(0,77) =g(n) - ooy ¢

donnée de Cauchy

® on peut résoudre notre équation au voisinage de £ = const si et
seulement si & # 0
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Equations du 2 L L
P 5 — o (25)2 2¢ 9¢ 2£)2
Courbes caractéristiques a=a (ar) +285: 5, +7 (Oy)
® Définition

Les caractéristiques sont des courbes telles que les données de
Cauchy sont insuffisantes pour déterminer la solution de I'équation

a leur voisinage

® Conséquences
Sur les caractéristiques, on a les propriétés
a=0

A€ = 9,¢ dw + 9,¢ dy = 0

(€ = const)
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Equations du 2 o¢ oc ¢
q =a(85)* +2838 85 +4(85)% =0
e dz + 8,€ dy = 0
Courbes caractéristiques df = Oz8 do+ OyE dy

On déduit de ces deux propriétés que

2
a(aac£> +256x€ ay€+7_0’ 0z - dy

06 0,2 0,6 dw
Ainsi, on obtient

dy 2 dy B
()~ (@)

ou la quantité g—g représente la pente des courbes caractéristiques
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Equations du 2 oy 12820 1122y = F
P dy\2 _ dy _
Courbes caractéristiques o (d'r) 28 (dT) +r=0

En résolvant cette équation, on trouve I'équation des pentes

BEvVp2—ay)der—ady=0

Si les coefficients sont constants, les caractéristiques deviennent des
droites de la forme

ar + by = const

avec

a=f++p2—ay, b=-«
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Equations du 2 w8l 2 0%
Classification (B+VB2Z —avy)dz —ady =0

L'existence de caractéristiques réelles est ainsi liée a la grandeur

On a ainsi trois cas possibles

® si A > 0, I'équation est dite hyperbolique

et il existe deux familles de courbes caractéristiques réelles

® si A =0, I'équation est dite parabolique

et il n'existe qu'une seule famille de courbes caractéristiques réelles doubles

® si A <0, I'équation est dite elliptique

et il existe deux familles de courbes caractéristiques complexes conjugées
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Classification - Equations hyperboliques 02u _ 28%u _ g
ot2 © 9z

On considere une équation de type d'Alembert

Pu_ 20u _
0x? Oy?

Cette équation est hyperbolique puisque
A=p—ay=c*>0, VYceR
L'équation des pentes donne ainsi deux relations

(B+VA)dz —ady=+cdz—dy =0
(B—VA)dz —ady=—cdz—dy=0
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Equations du 2°

+cdz —dy =0
. ) . . —cdx —dy =0
Classification - Equations hyperboliques

Comme les coefficients sont constants, on en déduit immédiatement
I"équation des courbes caractéristiques

& = +cx — y = const

n = —cx — Yy = const
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Classification - Equations paraboliques ou

9%u
at ”3T2_O

On considere une équation de type diffusion instationnaire

0%u  Ou

Vo = 7

Cette équation est parabolique puisque
A=p*—ay=0, YveR

L'équation des pentes donne ainsi I'unique relation

(ﬁ—i—\/&)dm—ady:—i—l/dyzo
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Comme les coefficients sont constants, on en déduit immédiatement

|"équation de I'unique courbe caractéristique

71 =1y = const
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Equations du 2 VR I
Classification - Equations elliptiques (B+ VP2 —ay)dz —ady=0

On considere une équation de type Poisson

0%u 4 0%u 0
1% —_— —_— =
or? = Oy
Cette équation est elliptique puisque
A=p>—ay=-1*<0, WeR

L'équation des pentes donne ainsi deux relations

(B+VA)dz —ady=+ivdzr—vdy=0
(B—VA)dz —ady=—ivdz—vdy=0
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. ) . . —ivder —vdy =0
Classification - Equations elliptiques

Comme les coefficients sont constants, on en déduit immédiatement
I"équation des courbes caractéristiques complexes

& = +ix — y = const
n = —ix — y = const
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® est lie a la classification physique des écoulements

® permet de déterminer quelles conditions aux limites sont nécessaires

® nous sera tres utile pour établir des méthodes de discrétisation

pour que le probleme soit bien posé

appropriées

Epilogue
°

[e]
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