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Systèmes du 1◦

Définition

On considère un système de n équations à n inconnues pouvant s’écrire
sous la forme

∂

∂x


u1

u2

...
un


︸ ︷︷ ︸

= u

+


A11 A12 . . . A1n

A21 A22 . . . A2n

...
...

. . .
...

An1 An2 . . . Ann


︸ ︷︷ ︸

= A

∂

∂y


u1

u2

...
un


︸ ︷︷ ︸

= u

=


0
0
0
0



et de manière équivalente comme

∂u

∂x
+ A

∂u

∂y
= 0
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Systèmes du 1◦

Découplage

∂u
∂x

+ A ∂u
∂y

= 0

On veut découpler le système pour faire apparâıtre n équations
indépendantes. Pour cela on introduit les nouvelles variables ri telles que

≡ V︷︸︸︷
∂u

∂r

∂r

∂x
+ A

≡ V︷︸︸︷
∂u

∂r

∂r

∂y
= 0, Vij =

∂ui
∂rj

Puis en multipliant à gauche par V−1, on obtient

∂r

∂x
+ V−1AV︸ ︷︷ ︸

≡ Λ

∂r

∂y
= 0
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Systèmes du 1◦

Découplage

∂u
∂x

+ A ∂u
∂y

= 0

∂r
∂x

+ Λ ∂r
∂y

= 0

V = ∂u
∂r

∂u
∂t

+ c ∂u
∂x

= 0

Pour que le nouveau système soit découplé, il faut impérativement que

Λij = [V−1AV]ij = λiδij

Ainsi, V doit diagonaliser A. Ceci implique que

Avj = λjvj

Vij = [vj ]i

Dans ce cas, on obtient les n équations d’advection indépendantes
recherchées

∂ri
∂x

+ λi
∂ri
∂y

= 0

aussi appelées équations de Riemann.
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Systèmes du 1◦

Courbes caractéristiques et invariants de Riemann

∂ri
∂x

+ λi
∂ri
∂y

= 0

La différentielle totale de ri s’écrit

dri =
∂ri
∂x

dx+
∂ri
∂y

dy

En posant dri = 0 puis en divisant par dx, on obtient

∂ri
∂x

+
dy

dx

∂ri
∂y

= 0

En utilisant les équations de Riemann, on a donc

dy

dx
= λi
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Systèmes du 1◦

Courbes caractéristiques et invariants de Riemann

∂ri
∂x

+
dy

dx︸︷︷︸
= λi

∂ri
∂x

= 0

V = ∂u
∂r

Les variables ri sont donc invariantes sur une famille de courbes
caractéristiques telle que

y − λix = const

Les variables ri sont les invariants de Riemann du système d’équations et
ils sont donnés par la relation

r =

∫
V−1 du
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Systèmes du 1◦

Classification

∂u
∂x

+ A ∂u
∂y

= 0

∂ri
∂x

+ λi
∂ri
∂y

= 0

En fonction des valeurs propres de A,

• le système est dit hyperbolique si

λi ∈ R, ∀i

• le système est dit elliptique si

λi ∈ C, ∀i

• le système est dit parabolique (ou hybride) si{
∃i, λi ∈ C
∃j, λj ∈ R
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Ecoulements idéaux compressibles
Equations de Prandtl-Glauert

∂tρ+ ∇ · (ρv) = 0

∂t(ρv) + ∇ · (ρvv) = ∇ · σ + ρg

∂t(ρe0) + ∇ · (ρe0v) = ∇ · (σ · v) + ρg · v + ∇ · φ

• Plus d’inconnues que d’équations de conservation

• Introduction d’équations constitutives (modélisation)
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Ecoulements idéaux compressibles
Equations de Prandtl-Glauert

v = (u∞ + u′x) ex + u′y ey

• Faibles perturbations

u′x, u
′
y � u∞

• Ecoulement irrotationnel

∇× u′ = 0

• Ecoulement stationnaire

∂
∂t ≡ 0

• Fluide parfait

σ = −pI, φ = 0
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Ecoulements idéaux compressibles
Equations de Prandtl–Glauert

∂u
∂x

+ A ∂u
∂y

= 0

∂r
∂x

+ Λ ∂r
∂y

= 0

Avec ces hypothèses, les équations de conservation se réduisent à

(1−Ma2)
∂u′x
∂x

+
∂u′y
∂y

= 0, Ma =
u∞
a∞

∂u′y
∂x
− ∂u′x

∂y
= 0

où la seconde équation exprime le caractère irrotationel de l’écoulement.
Sous forme matricielle, avec θ2 = Ma2 − 1, on a

∂

∂x

(
u′x
u′y

)
︸ ︷︷ ︸

= u

+

(
0 −1/θ2

−1 0

)
︸ ︷︷ ︸

= A

∂

∂y

(
u′x
u′y

)
︸ ︷︷ ︸

= u

=

(
0
0

)
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Ecoulements idéaux compressibles
Equations de Prandtl–Glauert

A =

(
0 −1/θ2

−1 0

)
Avj = λjvj

Λ = V−1AV

• Matrice des valeurs propres de A

Λ =

(
+1/θ 0

0 −1/θ

)
• Matrice des vecteurs propres de A

V =
1

2

(
−1/θ +1/θ
+1 +1

)
V−1 =

(
−θ +1
+θ +1

)
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Ecoulements idéaux compressibles
Equations de Prandtl–Glauert

λi = dy
dx

= ±1/θ

V = ∂u
∂r

V−1 =

(
−θ +1
+θ +1

)

• Invariants de Riemann

r =

∫
V−1du =

(
−θu′x + u′y
+θu′x + u′y

)
• Courbes caractéristiques

λi dx− dy = 0

dont on déduit que

ξ = x− θy = const

η = x+ θy = const
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Ecoulements idéaux compressibles
Lien entre classification mathématique et physique

Nous avons vu que les valeurs propres sont données par

λi =
dy

dx
= ± 1√

Ma2 − 1

Ainsi, lorsque

• Ma < 1 : écoulement subsonique, équation elliptique
Il existe deux familles de caractéristiques complexes conjugées

• Ma = 1 : écoulement sonique, équation parabolique
Il n’existe qu’une seule famille de caractéristiques réelles doubles

• Ma > 1 : écoulement supersonique, équation hyperbolique
Il existe deux familles de caractéristiques réelles
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Ecoulements idéaux compressibles
Ecoulement supersonique - Equation hyperbolique

• Caractéristiques

ξ = x− θy = const

η = x+ θy = const

• Invariants de Riemann

±θu′x + u′y = const
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Ecoulements idéaux compressibles
Ecoulement supersonique - Equation hyperbolique
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Ecoulements idéaux compressibles
Ecoulement sonique - Equation parabolique

• Caractéristiques

ξ = x− θy = const

η = x+ θy = const

• Invariants de Riemann

±θu′x + u′y = const



Systèmes du 1◦ Ecoulements Conditions limites Equations du 2◦ Epilogue

Ecoulements idéaux compressibles
Ecoulement sonique - Equation parabolique
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Ecoulements idéaux compressibles
Ecoulement subsonique - Equation elliptique

• Caractéristiques

ξ = x− θy = const

η = x+ θy = const

• Invariants de Riemann

±θu′x + u′y = const
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Ecoulements idéaux compressibles
Ecoulement subsonique - Equation elliptique
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Conditions aux limites
Equation hyperbolique

Sur ξ = x− θy = const, on a

−θu′x(A) + u′y(A) = −θu′x(C) + u′y(C) = const

Sur η = x+ θy = const, on a

+θu′x(B) + u′y(B) = +θu′x(C) + u′y(C) = const
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Conditions aux limites
Equation hyperbolique

Les grandeurs étant connues sur C, on isole les inconnues au point C

u′x(C) =
1

2
(u′x(A) + u′x(B)) +

θ

2
(u′y(A)− u′y(B))

u′y(C) =
1

2
(u′y(A) + u′y(B)) +

θ

2
(u′x(A)− u′x(B))

On peut donc déterminer les inconnues dans le triangle ABC en
connaissant seulement les valeurs sur C
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Conditions aux limites
Equation hyperbolique

• Données (conditions aux limites) nécessaires sur une partie de la
frontière

• Correspond à un problème d’évolution
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Conditions aux limites
Problème bien posé

• Existence
La solution existe, et en particulier on a autant d’équations indépendantes que d’inconnues

• Unicité
La solution est uniquement déterminée par les données

• Dépendance
La solution dépend continûment des données, c’est-à-dire que de faibles modications dans les données

produisent de faibles modications dans la solution
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Conditions aux limites
Equation parabolique

• Données (conditions aux limites) nécessaires sur une partie de la
frontière

• Correspond à un problème d’évolution
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Conditions aux limites
Equation elliptique

• Données (conditions aux limites) nécessaires sur toute la frontière

• Correspond à un problème d’équilibre
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Equations aux dérivées partielles du second degré
Définition

On considère l’équation générale

α
∂2u

∂x2
+ 2β

∂2u

∂x∂y
+ γ

∂2u

∂y2
= F

(
x, y, u,

∂u

∂x
,
∂u

∂y

)

• Equation aux dérivées partielles du second ordre

• Deux dimensions (x, y)

• x et y peuvent représenter des dimensions spatiales ou temporelles

• On suppose les coefficients α, β, γ non nuls
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Equations du 2◦

Problème de Cauchy - Cas particulier

α ∂
2u
∂x2

+ 2β ∂2u
∂x∂y

+ γ ∂
2u
∂y2

= F

• En connaissant sur x = const
e.g.
= 0

u(0, y) = f(y)︸ ︷︷ ︸
donnée de Cauchy

→ ∂u

∂y
= f ′,

∂2u

∂y2
= f ′′

• et en connaisant aussi la dérivée selon x

∂u

∂x
(0, y) = g(y)︸ ︷︷ ︸

donnée de Cauchy

→ ∂2u

∂x∂y
= g′

• on peut résoudre notre équation au voisinage de x = const puisque
puisque par hypothèse α 6= 0
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Equations du 2◦

Problème de Cauchy - Cas général

En choisissant un changement de coordonnées

ξ = φ1(x, y), η = φ2(x, y)

dont le jacobien s’écrit

J =

(
∂ξ
∂x

∂ξ
∂y

∂η
∂x

∂η
∂y

)

et en supposant qu’il soit inversible, c’est-à-dire

det(J) =
∂ξ

∂x

∂η

∂y
− ∂η

∂x

∂ξ

∂y
6= 0
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Equations du 2◦

Problème de Cauchy - Cas général

l’équation fondamentale devient

α̃
∂2u

∂ξ2
+ 2β̃

∂2u

∂ξ∂η
+ γ̃

∂2u

∂η2
= F̃

(
ξ, η, u,

∂u

∂ξ
,
∂u

∂η

)
avec

α̃ = α

(
∂ξ

∂x

)2

+ 2β
∂ξ

∂x

∂ξ

∂y
+ γ

(
∂ξ

∂y

)2

β̃ = α
∂ξ

∂x

∂η

∂x
+ β

(
∂ξ

∂x

∂η

∂y
+
∂ξ

∂y

∂η

∂x

)
+ γ

∂ξ

∂y

∂η

∂y

γ̃ = α

(
∂η

∂x

)2

+ 2β
∂η

∂x

∂η

∂y
+ γ

(
∂η

∂y

)2
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Equations du 2◦

Problème de Cauchy - Cas général

α̃ ∂
2u
∂ξ2

+ 2β̃ ∂2u
∂ξ∂η

+ γ̃ ∂
2u
∂η2

= F̃

α̃ = α
(
∂ξ
∂x

)2
+ 2β ∂ξ

∂x
∂ξ
∂y

+ γ
(
∂ξ
∂y

)2

• En connaissant sur une courbe ξ = const
e.g.
= 0

u(0, η) = f(η)︸ ︷︷ ︸
donnée de Cauchy

→ ∂u

∂η
= f ′,

∂2u

∂η2
= f ′′

• et en connaissant aussi la dérivée selon ξ

∂u

∂ξ
(0, η) = g(η)︸ ︷︷ ︸

donnée de Cauchy

→ ∂2u

∂ξ∂η
= g′

• on peut résoudre notre équation au voisinage de ξ = const si et
seulement si α̃ 6= 0
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Equations du 2◦

Courbes caractéristiques

α̃ ∂
2u
∂ξ2

+ 2β̃ ∂2u
∂ξ∂η

+ γ̃ ∂
2u
∂η2

= F̃

α̃ = α
(
∂ξ
∂x

)2
+ 2β ∂ξ

∂x
∂ξ
∂y

+ γ
(
∂ξ
∂y

)2

• Définition

Les caractéristiques sont des courbes telles que les données de
Cauchy sont insuffisantes pour déterminer la solution de l’équation
à leur voisinage

• Conséquences

Sur les caractéristiques, on a les propriétés

α̃ = 0

dξ = ∂xξ dx+ ∂yξ dy = 0 (ξ = const)
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Equations du 2◦

Courbes caractéristiques

α̃ = α
(
∂ξ
∂x

)2
+ 2β ∂ξ

∂x
∂ξ
∂y

+ γ
(
∂ξ
∂y

)2
= 0

dξ = ∂xξ dx + ∂yξ dy = 0

On déduit de ces deux propriétés que

α

(
∂xξ

∂yξ

)2

+ 2β
∂xξ ∂yξ

(∂yξ)2
+ γ = 0,

∂xξ

∂yξ
= −dy

dx

Ainsi, on obtient

α

(
dy

dx

)2

− 2β

(
dy

dx

)
+ γ = 0

où la quantité dy
dx représente la pente des courbes caractéristiques
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Equations du 2◦

Courbes caractéristiques

α ∂
2u
∂x2

+ 2β ∂2u
∂x∂y

+ γ ∂
2u
∂y2

= F

α
(

dy
dx

)2
− 2β

(
dy
dx

)
+ γ = 0

En résolvant cette équation, on trouve l’équation des pentes

(β ±
√
β2 − αγ) dx− α dy = 0

Si les coefficients sont constants, les caractéristiques deviennent des
droites de la forme

ax+ by = const

avec
a = β ±

√
β2 − αγ, b = −α
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Equations du 2◦

Classification

α ∂
2u
∂x2

+ 2β ∂2u
∂x∂y

+ γ ∂
2u
∂y2

= F

(β ±
√
β2 − αγ) dx− α dy = 0

L’existence de caractéristiques réelles est ainsi liée à la grandeur

∆ = β2 − αγ

On a ainsi trois cas possibles

• si ∆ > 0, l’équation est dite hyperbolique
et il existe deux familles de courbes caractéristiques réelles

• si ∆ = 0, l’équation est dite parabolique
et il n’existe qu’une seule famille de courbes caractéristiques réelles doubles

• si ∆ < 0, l’équation est dite elliptique
et il existe deux familles de courbes caractéristiques complexes conjugées
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Equations du 2◦

Classification - Equations hyperboliques

α ∂
2u
∂x2

+ 2β ∂2u
∂x∂y

+ γ ∂
2u
∂y2

= F

(β ±
√
β2 − αγ) dx− α dy = 0

∂2u
∂t2

− c2 ∂
2u
∂x2

= 0

On considère une équation de type d’Alembert

∂2u

∂x2
− c2 ∂

2u

∂y2
= 0

Cette équation est hyperbolique puisque

∆ = β2 − αγ = c2 > 0, ∀c ∈ R

L’équation des pentes donne ainsi deux relations

(β +
√

∆) dx− α dy = +c dx− dy = 0

(β −
√

∆) dx− α dy = −c dx− dy = 0
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Equations du 2◦

Classification - Equations hyperboliques

+c dx− dy = 0

−c dx− dy = 0

Comme les coefficients sont constants, on en déduit immédiatement
l’équation des courbes caractéristiques

ξ = +cx− y = const

η = −cx− y = const
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Equations du 2◦

Classification - Equations paraboliques

α ∂
2u
∂x2

+ 2β ∂2u
∂x∂y

+ γ ∂
2u
∂y2

= F

(β ±
√
β2 − αγ) dx− α dy = 0

∂u
∂t

− ν ∂
2u
∂x2

= 0

On considère une équation de type diffusion instationnaire

−ν ∂
2u

∂x2
=
∂u

∂y

Cette équation est parabolique puisque

∆ = β2 − αγ = 0, ∀ν ∈ R

L’équation des pentes donne ainsi l’unique relation

(β +
√

∆) dx− α dy = +ν dy = 0
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Equations du 2◦

Classification - Equations paraboliques

+ν dy = 0

Comme les coefficients sont constants, on en déduit immédiatement
l’équation de l’unique courbe caractéristique

η = y = const
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Equations du 2◦

Classification - Equations elliptiques

α ∂
2u
∂x2

+ 2β ∂2u
∂x∂y

+ γ ∂
2u
∂y2

= F

(β ±
√
β2 − αγ) dx− α dy = 0

On considère une équation de type Poisson

ν

(
∂2u

∂x2
+
∂2u

∂y2

)
= 0

Cette équation est elliptique puisque

∆ = β2 − αγ = −ν2 < 0, ∀ν ∈ R

L’équation des pentes donne ainsi deux relations

(β +
√

∆) dx− α dy = +iν dx− ν dy = 0

(β −
√

∆) dx− α dy = −iν dx− ν dy = 0
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Equations du 2◦

Classification - Equations elliptiques

+iν dx− ν dy = 0

−iν dx− ν dy = 0

Comme les coefficients sont constants, on en déduit immédiatement
l’équation des courbes caractéristiques complexes

ξ = +ix− y = const

η = −ix− y = const
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Conclusion

La classification mathématique des équations

• est liée à la classification physique des écoulements

• permet de déterminer quelles conditions aux limites sont nécessaires
pour que le problème soit bien posé

• nous sera très utile pour établir des méthodes de discrétisation
appropriées



Systèmes du 1◦ Ecoulements Conditions limites Equations du 2◦ Epilogue
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